1.理论
2.残差块
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
#ResNet沿用了VGG完整的3*3卷积层设计.残差块的实现如下:
#此代码生成两种类型的网络:
#一种是当use_1x1conv=False时,应用ReLU非线性函数之前,将输入添加到输出。
#另一种是当use_1x1conv=True时,添加通过1*1卷积调整通道和分辨率。
class Residual(nn.Module):
def __init__(self,input_channels,num_channels,
use_1x1conv = False, strides = 1):
super().__init__()
self.conv1 = nn.Conv2d(input_channels,num_channels,
kernel_size=3,padding=1,stride=strides)
self.conv2 = nn.Conv2d(num_channels,num_channels,
kernel_size=3,padding=1)
if use_1x1conv:
self.conv3 = nn.Conv2d(input_channels,num_channels,
kernel_size=1,stride=strides)
else:
self.conv3 = None
self.bn1 = nn.BatchNorm2d(num_channels)
self.bn2 = nn.BatchNorm2d(num_channels)
def forward(self,X):
Y = F.relu(self.bn1(self.conv1(X)))
Y = self.bn2(self.conv2(Y))
if self.conv3:
X = self.conv3(X)
Y += X
return F.relu(Y)
#下面来查看输入和输出形状一致的情况。
b1k = Residual(3,3)
X = torch.rand(4,3,6,6)
Y = b1k(X)
print(Y.shape)
#也可以在增加输出通道数的同时,减半输出的高和宽
b1k = Residual(3,6,use_1x1conv=True,strides=2)
print(b1k(X).shape)
3.ResNet模型
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
#ResNet沿用了VGG完整的3*3卷积层设计.残差块的实现如下:
#此代码生成两种类型的网络:
#一种是当use_1x1conv=False时,应用ReLU非线性函数之前,将输入添加到输出。
#另一种是当use_1x1conv=True时,添加通过1*1卷积调整通道和分辨率。
class Residual(nn.Module):
def __init__(self,input_channels,num_channels,
use_1x1conv = False, strides = 1):
super().__init__()
self.conv1 = nn.Conv2d(input_channels,num_channels,
kernel_size=3,padding=1,stride=strides)
self.conv2 = nn.Conv2d(num_channels,num_channels,
kernel_size=3,padding=1)
if use_1x1conv:
self.conv3 = nn.Conv2d(input_channels,num_channels,
kernel_size=1,stride=strides)
else:
self.conv3 = None
self.bn1 = nn.BatchNorm2d(num_channels)
self.bn2 = nn.BatchNorm2d(num_channels)
def forward(self,X):
Y = F.relu(self.bn1(self.conv1(X)))
Y = self.bn2(self.conv2(Y))
if self.conv3:
X = self.conv3(X)
Y += X
return F.relu(Y)
'''
#下面来查看输入和输出形状一致的情况。
b1k = Residual(3,3)
X = torch.rand(4,3,6,6)
Y = b1k(X)
print(Y.shape)
#也可以在增加输出通道数的同时,减半输出的高和宽
b1k = Residual(3,6,use_1x1conv=True,strides=2)
print(b1k(X).shape)
'''
#ResNet的前两层跟之前介绍的GoogLeNet中的一样,在输出通道数为64、步幅为2的7*7卷积层后,接步幅为2的3*3的最大汇聚层
#不同之处在于ResNet每个卷积层后增加了批量规范化层。
b1 = nn.Sequential(nn.Conv2d(1,64,kernel_size=7,stride=2,padding=3),
nn.BatchNorm2d(64),nn.ReLU(),
nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
#GoogLeNet在后面接了4个由Inception块组成的模块。
#ResNet则使用4个由残差块组成的模块,每个模块使用若干个同样输出通道数的残差块。
#第一个模块的通道数同输入通道数一致。 由于之前已经使用了步幅为2的最大汇聚层,所以无须减小高和宽。
#之后的每个模块在第一个残差块里将上一个模块的通道数翻倍,并将高和宽减半。
def resnet_block(input_channels,num_channels,num_residuals,
first_block = False):
b1k = []
for i in range(num_residuals):
if i == 0 and not first_block:
b1k.append(Residual(input_channels,num_channels,
use_1x1conv=True,strides=2))
else:
b1k.append(Residual(num_channels,num_channels))
return b1k
#接着在ResNet加入所有残差块,这里每个模块使用2个残差块。
b2 = nn.Sequential(*resnet_block(64,64,2,first_block=True))
b3 = nn.Sequential(*resnet_block(64,128,2))
b4 = nn.Sequential(*resnet_block(128,256,2))
b5 = nn.Sequential(*resnet_block(256,512,2))
#最后,与GoogLeNet一样,在ResNet中加入全局平均汇聚层,以及全连接层输出。
net = nn.Sequential(b1,b2,b3,b4,b5,
nn.AdaptiveAvgPool2d((1,1)),
nn.Flatten(),nn.Linear(512,10))
#在训练ResNet之前,让我们观察一下ResNet中不同模块的输入形状是如何变化的。
#在之前所有架构中,分辨率降低,通道数量增加,直到全局平均汇聚层聚集所有特征。
X = torch.rand(size=(1,1,224,224))
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape:\t',X.shape)
4.ResNet模型训练
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
#ResNet沿用了VGG完整的3*3卷积层设计.残差块的实现如下:
#此代码生成两种类型的网络:
#一种是当use_1x1conv=False时,应用ReLU非线性函数之前,将输入添加到输出。
#另一种是当use_1x1conv=True时,添加通过1*1卷积调整通道和分辨率。
class Residual(nn.Module):
def __init__(self,input_channels,num_channels,
use_1x1conv = False, strides = 1):
super().__init__()
self.conv1 = nn.Conv2d(input_channels,num_channels,
kernel_size=3,padding=1,stride=strides)
self.conv2 = nn.Conv2d(num_channels,num_channels,
kernel_size=3,padding=1)
if use_1x1conv:
self.conv3 = nn.Conv2d(input_channels,num_channels,
kernel_size=1,stride=strides)
else:
self.conv3 = None
self.bn1 = nn.BatchNorm2d(num_channels)
self.bn2 = nn.BatchNorm2d(num_channels)
def forward(self,X):
Y = F.relu(self.bn1(self.conv1(X)))
Y = self.bn2(self.conv2(Y))
if self.conv3:
X = self.conv3(X)
Y += X
return F.relu(Y)
'''
#下面来查看输入和输出形状一致的情况。
b1k = Residual(3,3)
X = torch.rand(4,3,6,6)
Y = b1k(X)
print(Y.shape)
#也可以在增加输出通道数的同时,减半输出的高和宽
b1k = Residual(3,6,use_1x1conv=True,strides=2)
print(b1k(X).shape)
'''
#ResNet的前两层跟之前介绍的GoogLeNet中的一样,在输出通道数为64、步幅为2的7*7卷积层后,接步幅为2的3*3的最大汇聚层
#不同之处在于ResNet每个卷积层后增加了批量规范化层。
b1 = nn.Sequential(nn.Conv2d(1,64,kernel_size=7,stride=2,padding=3),
nn.BatchNorm2d(64),nn.ReLU(),
nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
#GoogLeNet在后面接了4个由Inception块组成的模块。
#ResNet则使用4个由残差块组成的模块,每个模块使用若干个同样输出通道数的残差块。
#第一个模块的通道数同输入通道数一致。 由于之前已经使用了步幅为2的最大汇聚层,所以无须减小高和宽。
#之后的每个模块在第一个残差块里将上一个模块的通道数翻倍,并将高和宽减半。
def resnet_block(input_channels,num_channels,num_residuals,
first_block = False):
b1k = []
for i in range(num_residuals):
if i == 0 and not first_block:
b1k.append(Residual(input_channels,num_channels,
use_1x1conv=True,strides=2))
else:
b1k.append(Residual(num_channels,num_channels))
return b1k
#接着在ResNet加入所有残差块,这里每个模块使用2个残差块。
b2 = nn.Sequential(*resnet_block(64,64,2,first_block=True))
b3 = nn.Sequential(*resnet_block(64,128,2))
b4 = nn.Sequential(*resnet_block(128,256,2))
b5 = nn.Sequential(*resnet_block(256,512,2))
#最后,与GoogLeNet一样,在ResNet中加入全局平均汇聚层,以及全连接层输出。
net = nn.Sequential(b1,b2,b3,b4,b5,
nn.AdaptiveAvgPool2d((1,1)),
nn.Flatten(),nn.Linear(512,10))
'''
#在训练ResNet之前,让我们观察一下ResNet中不同模块的输入形状是如何变化的。
#在之前所有架构中,分辨率降低,通道数量增加,直到全局平均汇聚层聚集所有特征。
X = torch.rand(size=(1,1,224,224))
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape:\t',X.shape)
'''
#在Fashion-MNIST数据集上训练ResNet。
lr,num_epochs,batch_size = 0.05,10,256
train_iter,test_iter = d2l.load_data_fashion_mnist(batch_size,resize=96)
d2l.train_ch6(net,train_iter,test_iter,num_epochs,lr,d2l.try_gpu())
d2l.plt.show()