爆改YOLOv8 |利用 iAFF迭代注意力改进C2f,高效涨点

news2025/1/20 1:55:29

1,本文介绍

iAFF的核心思想是通过细致的注意力机制优化特征融合,从而提升卷积神经网络的性能。它不仅解决了因尺度和语义不一致导致的特征融合问题,还引入了多尺度通道注意力模块,提供了一个统一且通用的特征融合方案。此外,iAFF通过迭代应用注意力机制来解决特征图初步整合中的潜在瓶颈,使模型即使在层数或参数较少的情况下也能获得优良的效果。

iAFF的主要创新包括:

  1. 注意力特征融合: 提出了利用注意力机制改进传统特征融合方法(如加和或串联)的新方式。

  2. 多尺度通道注意力模块: 解决了在不同尺度上融合特征时,特别是处理语义和尺度不一致问题的挑战。

  3. 迭代注意力特征融合: 通过迭代应用注意力机制,改善特征图的初步整合,克服了初步整合可能成为性能瓶颈的问题。

关于iAFF的详细介绍可以看论文:https://arxiv.org/pdf/2009.14082.pdf

本文将讲解如何将iAFF融合进yolov8

话不多说,上代码!

2,将iAFF融合进yolov8

2.1 步骤一

找到如下的目录'ultralytics/nn/modules',然后在这个目录下创建一个iAFF.py文件,文件名字可以根据你自己的习惯起,然后将iAFF的核心代码复制进去

import torch
import torch.nn as nn
 
def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p
 
 
class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
    default_act = nn.SiLU()  # default activation
 
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
 
    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))
 
    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))
 
 
class iAFF(nn.Module):
    '''
    多特征融合 iAFF
    '''
 
    def __init__(self, channels=64, r=2):
        super(iAFF, self).__init__()
        inter_channels = int(channels // r)
 
        # 本地注意力
        self.local_att = nn.Sequential(
            nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(inter_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(channels),
        )
 
        # 全局注意力
        self.global_att = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
            nn.ReLU(inplace=True),
            nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
        )
 
        # 第二次本地注意力
        self.local_att2 = nn.Sequential(
            nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(inter_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(channels),
        )
        # 第二次全局注意力
        self.global_att2 = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(inter_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(channels),
        )
 
        self.sigmoid = nn.Sigmoid()
 
    def forward(self, x, residual):
 
        xa = x + residual
        xl = self.local_att(xa)
        xg = self.global_att(xa)
        xlg = xl + xg
        wei = self.sigmoid(xlg)
        xi = x * wei + residual * (1 - wei)
 
        xl2 = self.local_att2(xi)
        xg2 = self.global_att(xi)
        xlg2 = xl2 + xg2
        wei2 = self.sigmoid(xlg2)
        xo = x * wei2 + residual * (1 - wei2)
        return xo
 
 
class AFF(nn.Module):
    '''
    多特征融合 AFF
    '''
 
    def __init__(self, channels=64, r=4):
        super(AFF, self).__init__()
        inter_channels = int(channels // r)
 
        self.local_att = nn.Sequential(
            nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(inter_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(channels),
        )
 
        self.global_att = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(inter_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(channels),
        )
 
        self.sigmoid = nn.Sigmoid()
 
    def forward(self, x, residual):
        xa = x + residual
        xl = self.local_att(xa)
        xg = self.global_att(xa)
        xlg = xl + xg
        wei = self.sigmoid(xlg)
 
        xo = 2 * x * wei + 2 * residual * (1 - wei)
        return xo
 
 
 
class C2f_iAFF(nn.Module):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""
 
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
        """Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
        expansion.
        """
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
 
    def forward(self, x):
        """Forward pass through C2f layer."""
        y = list(self.cv1(x).chunk(2, 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))
 
    def forward_split(self, x):
        """Forward pass using split() instead of chunk()."""
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))
 
class Bottleneck(nn.Module):
    """Standard bottleneck."""
 
    def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
        """Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
        expansion.
        """
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, k[0], 1)
        self.cv2 = Conv(c_, c2, k[1], 1, g=g)
        self.add = shortcut and c1 == c2
        self.iAFF = iAFF(c2)
    def forward(self, x):
        """'forward()' applies the YOLO FPN to input data."""
        if self.add:
           results =  self.iAFF(x , self.cv2(self.cv1(x)))
        else:
            results = self.cv2(self.cv1(x))
        return results
 
 
if __name__ == '__main__':
    x = torch.ones(8, 64, 32, 32)
    channels = x.shape[1]
    model = C2f_iAFF(channels, channels, True)
    output = model(x)
    print(output.shape)
2.2 步骤二

在task.py中导入iAFF,如下图所示

2.3 步骤三

在task.py中注册C2f_iAFF,如下图所示,需要在两个位置添加

到此注册成功,复制后面的yaml文件直接运行即可

yaml文件

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
 
# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOP
 
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f_iAFF, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f_iAFF, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f_iAFF, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f_iAFF, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
 
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12
 
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)
 
 
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)
 
 
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)
 
 
  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

不知不觉已经看完了哦,动动小手留个点赞吧--_--

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2074279.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

二分查找算法:朴素二分+左右边界二分力扣实战应用

目录: 1、二分查找算法简介 2、算法原理及时间复杂度分析 2.1 朴素二分算法 3.2 查找左右边界的二分算法 3.2.1 查找左边界 3.2.2 查找右边界 3.3 时间复杂度分析 3、二分查找算法模版 3.1 朴素二分模版 3.2 查找左右边界的二分模版 4、算法应用【leetco…

企业收款码,自动统计职员绩效-微信支付商家版

一、企业收款码 在快节奏的商业世界中,效率与精准是企业成功的关键。微信支付商家版企业收款码,为你开启全新的绩效统计时代。 告别繁琐的传统统计方式,无需再耗费大量时间人工整理数据。企业收款码自动统计职员绩效,每一笔交易都…

Cortex-A7的GIC(通用中断控制器):中断处理状态机

0 资料 ARM Generic Interrupt Controller Architecture version 2.0 Architecture Specification1 中断处理状态机 1.1 中断处理状态说明及状态机转换图 说明: Inactive:未激活,中断无效。中断非挂起或非激活。 Pending:挂起&a…

iZotope Ozone 11 Advanced:专业音频制作与母带处理的巅峰之作

iZotope Ozone 11 Advanced是一款专为音频工程师、制作人和音乐人设计的顶级音频后期制作软件,无论是Mac还是Windows平台,都能为用户提供无与伦比的音频处理体验。该软件集成了最先进的人工智能技术和一系列精密的音频处理工具,让音频作品的最…

还在烦恼Cosplay论坛开发?探索PHP+Vue的完美解决方案!

🎓 作者:计算机毕设小月哥 | 软件开发专家 🖥️ 简介:8年计算机软件程序开发经验。精通Java、Python、微信小程序、安卓、大数据、PHP、.NET|C#、Golang等技术栈。 🛠️ 专业服务 🛠️ 需求定制化开发源码提…

STM32定时器PWM输出

STM32定时器PWM(脉冲宽度调制)输出原理,在使用固件库时,主要涉及定时器的配置以及PWM信号的生成。以下是对该原理的详细解释: 一、PWM基本概念 PWM(Pulse Width Modulation)是一种通过改变脉冲…

docker 容器内文件传到宿主机上

sudo docker cp 容器名:文件路径 宿主机路径 ylshy-Super-Server:~$ pwd /home/yl ylshy-Super-Server:~$ ^C ylshy-Super-Server:~$ sudo docker cp ylafl:/opt/live555/testProgs/rtsp.pcap /home/yl Successfully copied 4.61kB to /home/yl ylshy-Super-Server…

自适应学习率(Datawhale X 李宏毅苹果书 AI夏令营)

传统的梯度下降方法在优化过程中常常面临学习率设置不当的问题。固定的学习率在训练初期可能过大,导致模型训练不稳定,而在后期可能过小,导致训练速度缓慢。为了克服这些问题,自适应学习率方法应运而生。这些方法通过动态调整学习…

Django使用视图动态输出CSV以及PDF的操作详解例子解析

代码示例: 在Django中,使用视图动态输出CSV和PDF文件是一个常见的需求,可以通过Python标准库中的csv模块和reportLab库来实现。以下是一些详细的操作步骤和示例代码。 CSV文件的动态输出 首先,需要导入Python的csv模块&#xf…

JSP的九大内置对象及其作用详解

JSP的九大内置对象及其作用详解 1. request对象2. response对象3. pageContext对象4. session对象5. application对象6. out对象7. config对象8. page对象9. exception对象 💖The Begin💖点点关注,收藏不迷路💖 在JSP&#xff08…

<数据集>骨折检测数据集<目标检测>

数据集格式:VOCYOLO格式 图片数量:2060张 标注数量(xml文件个数):2060 标注数量(txt文件个数):2060 标注类别数:7 标注类别名称:[elbow positive, shoulder fracture, fingers positive, wrist positi…

0818-0824面试题目和复习整理

根据面试问的问题整理一下 1. 并查集 int n 1005; // n根据题目中节点数量而定&#xff0c;一般比节点数量大一点就好 vector<int> father vector<int> (n, 0); // C里的一种数组结构// 并查集初始化 void init() {for (int i 0; i < n; i) {father[i] i;…

Kubernetes部署相关概念

本文封面由 凯楠&#x1f4f8;友情提供 Kubernetes部署相关概念概览 容器运行时&#xff08;container runtime&#xff09;&#xff1a; 是负责在计算机操作系统上创建、运行和管理容器的软件组件。它是整个容器化环境中的关键组成部分&#xff0c;与操作系统内核紧密交互&a…

linux(Ubuntu )搭C++ 最新版GDAL完整教程

在前面的文章中主要是介绍如何在windows系统下利用python安装gdal库&#xff0c;如下&#xff1a; 如何快速安装GDAL 在linux环境下python安装gdal也可以利用现成的whl文件&#xff0c;但是安装c GDAL环境的比较麻烦&#xff0c;目前网络上大多是安装的老版本的教程&#xff…

springboot3 SecurityConfig SecurityFilterChain 需要使用CorsFilter,实际是CorsWebFilter

使用springboot3做微服务开发&#xff0c;由于网关gateway使用webFlux&#xff0c;因此导致实际类型是CorsWebFilter&#xff0c;但是在public SecurityFilterChain authorizationServerSecurityFilterChain(HttpSecurity http) throws Exception方法中&#xff0c;项目启动报错…

rt-studio+clion+cubemx联合使用(使用scons进行整合)

前言 以前在clion中使用rt-thread的方式 1. 使用的cubemx生成的方式: 这种方式只能使用rt-thread的内核版本 2. 自己去把rt-thread的源码拷贝到对应的工程中&#xff0c;再编写对应的CMakelists文件进行管理思考 我的想法是通过rt-studio创建项目&#xff0c;然后通过工具转…

河南萌新2024第二场

H 狼狼的备忘录 题目大意&#xff1a; 给定n本备忘录&#xff0c;里面记录了一个人的m个星座信息&#xff0c;要求按一下要求整理备忘录 A&#xff1a;同一个成员的星座信息 x 是星座信息 y 的后缀&#xff0c;那么星座信息 x 会没有星座信息 y 完整&#xff0c;从而应该只保…

Nginx + Docker Compose前后端分离部署到服务器过程记录

一、采用Nginx部署前端VUE&#xff08;Vite&#xff09; 1、修改配置文件vite.config.ts&#xff0c;将本地环境改为开发环境 注意base处只能是‘/’ 不能是 ‘./!在这里插入图片描述 对项目进行打包 在当前目录的终端执行&#xff1a;npm run build 若报错如下&#xff1…

CORS错误

说明&#xff1a;记录一次CORS&#xff08;跨域&#xff09;错误&#xff0c;及解决方法。 场景 在vscode里面运行前端项目&#xff0c;idea中运行后端项目&#xff0c;登录时&#xff0c;访问接口&#xff0c;报CORS错误&#xff0c;如下&#xff1a; 解决 在后端项目的网关…

【PyQt6 应用程序】PyUIC使用加载可视化文件

使用uic模块可以方便地从Qt Designer设计的UI文件加载用户界面。这种方法使得设计和布局变得更加直观,并且可以将用户界面设计与程序逻辑分离。 本次展示如何使用PyQt6和uic模块来加载一个简单的UI文件。 文章目录 需要使用Qt Designer创建一个UI文件。Qt Designer是一个强大…