代码随想录算法day22 | 回溯算法part04 | 491.递增子序列,46.全排列,47.全排列 II

news2024/9/23 17:20:32

491.递增子序列

本题和大家做过的 90.子集II 非常像,但又很不一样,很容易掉坑里。

力扣题目链接(opens new window)

给定一个整型数组, 你的任务是找到所有该数组的递增子序列,递增子序列的长度至少是2。

示例:

  • 输入: [4, 6, 7, 7]
  • 输出: [[4, 6], [4, 7], [4, 6, 7], [4, 6, 7, 7], [6, 7], [6, 7, 7], [7,7], [4,7,7]]

说明:

  • 给定数组的长度不会超过15。
  • 数组中的整数范围是 [-100,100]。
  • 给定数组中可能包含重复数字,相等的数字应该被视为递增的一种情况。

这个递增子序列比较像是取有序的子集。而且本题也要求不能有相同的递增子序列。

这又是子集,又是去重,是不是不由自主的想起了上篇博客讲过的 90.子集Ⅱ 。代码随想录算法day21 | 回溯算法part03 | 93.复原IP地址, 78.子集,90.子集II-CSDN博客

就是因为太像了,更要注意差别所在,要不就掉坑里了!

 90.子集Ⅱ 中我们是通过排序,再加一个标记数组来达到去重的目的。

而本题求自增子序列,是不能对原数组进行排序的,排完序的数组都是自增子序列了。

所以不能使用之前的去重逻辑!

本题给出的示例,还是一个有序数组 [4, 6, 7, 7],这更容易误导大家按照排序的思路去做了。

为了有鲜明的对比,我用[4, 7, 6, 7]这个数组来举例,抽象为树形结构如图:

491. 递增子序列1

回溯三部曲

  • 递归函数参数

本题求子序列,很明显一个元素不能重复使用,所以需要 startIndex,调整下一层递归的起始位置。

代码如下:

List<List<Integer>> result = new ArrayList<>();
List<Integer> path = new LinkedList<>();
public void backtracking(int[] nums, int startIndex)
  • 终止条件

本题其实类似求子集问题,也是要遍历树形结构找每一个节点,可以不加终止条件,startIndex 每次都会加1,并不会无限递归。

但本题收集结果有所不同,题目要求递增子序列大小至少为2,所以代码如下:

if (path.size() > 1) {
    result.add(new ArrayList<>(path);
    // 注意这里不要加return,因为要取树上的所有节点
}
  • 单层搜索逻辑

491. 递增子序列1

 在图中可以看出,同一父节点下的同层上使用过的元素就不能再使用了

那么单层搜索代码如下:

int[] used = new int[201];
for (int i = start; i < nums.length; i++) {
    if (!path.isEmpty() && nums[i] < path.get(path.size() - 1) ||
               (used[nums[i] + 100] == 1)) continue;
    used[nums[i] + 100] = 1;
    path.add(nums[i]);
    backtracking(nums, i + 1);
    path.remove(path.size() - 1);
}

最后整体Java代码如下:

// 使用数组used
class Solution {
    private List<Integer> path = new ArrayList<>();
    private List<List<Integer>> res = new ArrayList<>();
    public List<List<Integer>> findSubsequences(int[] nums) {
        backtracking(nums,0);
        return res;
    }

    private void backtracking (int[] nums, int start) {
        if (path.size() > 1) {
            res.add(new ArrayList<>(path));
        }

        int[] used = new int[201];
        for (int i = start; i < nums.length; i++) {
            if (!path.isEmpty() && nums[i] < path.get(path.size() - 1) ||
                    (used[nums[i] + 100] == 1)) continue;
            used[nums[i] + 100] = 1;
            path.add(nums[i]);
            backtracking(nums, i + 1);
            path.remove(path.size() - 1);
        }
    }
}

// 使用hashSet
class Solution {
    List<List<Integer>> result = new ArrayList<>();
    List<Integer> path = new ArrayList<>();
    public List<List<Integer>> findSubsequences(int[] nums) {
        backTracking(nums, 0);
        return result;
    }
    private void backTracking(int[] nums, int startIndex){
        if(path.size() >= 2)
                result.add(new ArrayList<>(path));            
        HashSet<Integer> hs = new HashSet<>();
        for(int i = startIndex; i < nums.length; i++){
            if(!path.isEmpty() && path.get(path.size() -1 ) > nums[i] || hs.contains(nums[i]))
                continue;
            hs.add(nums[i]);
            path.add(nums[i]);
            backTracking(nums, i + 1);
            path.remove(path.size() - 1);
        }
    }
}

//使用map
class Solution {
    //结果集合
    List<List<Integer>> res = new ArrayList<>();
    //路径集合
    LinkedList<Integer> path = new LinkedList<>();
    public List<List<Integer>> findSubsequences(int[] nums) {
        getSubsequences(nums,0);
        return res;
    }
    private void getSubsequences( int[] nums, int start ) {
        if(path.size()>1 ){
            res.add( new ArrayList<>(path) );
            // 注意这里不要加return,要取树上的节点
        }
        HashMap<Integer,Integer> map = new HashMap<>();
        for(int i=start ;i < nums.length ;i++){
            if(!path.isEmpty() && nums[i]< path.getLast()){
                continue;
            }
            // 使用过了当前数字
            if ( map.getOrDefault( nums[i],0 ) >=1 ){
                continue;
            }
            map.put(nums[i],map.getOrDefault( nums[i],0 )+1);
            path.add( nums[i] );
            getSubsequences( nums,i+1 );
            path.removeLast();
        }
    }
}

对于已经习惯写回溯的同学,看到递归函数上面的 hs.add(nums[i]);,下面却没有对应的 remove之类的操作,应该很不习惯吧

这也是需要注意的点,HashSet<Integer> hs 是记录本层元素是否重复使用,新的一层 hs 都会重新定义(清空),所以要知道 hs 只负责本层

而之前的 40.组合总和Ⅱ 之所以需要更改 used 的值是因为每次递归都不会重新定义,一直重复利用的东西需要每次回溯的时候清空本次递归造成的结果

代码随想录算法day20 | 回溯算法part02 | 39. 组合总和,40.组合总和II,131.分割回文串-CSDN博客

总结

本题题解清一色都说是深度优先搜索,但我更倾向于说它用回溯法,而且本题我也是完全使用回溯法的逻辑来分析的。

相信大家在本题中处处都能看到是 求子集 的身影,但处处又都是陷阱。

对于养成思维定式或者套模板套嗨了的同学,这道题起到了很好的警醒作用。更重要的是拓展了大家的思路!


46.全排列

本题重点感受一下,排列问题 与 组合问题,组合总和,子集问题的区别。 为什么排列问题不用 startIndex

力扣题目链接(opens new window)

给定一个 没有重复 数字的序列,返回其所有可能的全排列。

示例:

  • 输入: [1,2,3]
  • 输出: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1] ]

此时我们已经学习了 77.组合问题、 131.分割回文串 78.子集问题,接下来看一看排列问题。

代码随想录算法day19 | 回溯算法part01 | 77. 组合,216.组合总和III,17.电话号码的字母组合-CSDN博客

代码随想录算法day20 | 回溯算法part02 | 39. 组合总和,40.组合总和II,131.分割回文串-CSDN博客

代码随想录算法day21 | 回溯算法part03 | 93.复原IP地址, 78.子集,90.子集II-CSDN博客

相信这个排列问题就算是让你用 for 循环暴力把结果搜索出来,这个暴力也不是很好写。

所以正如我们之前所讲的为什么回溯法是暴力搜索,效率这么低,还要用它?——因为一些问题能暴力搜出来就已经很不错了!

以[1,2,3]为例,抽象成树形结构如下:

全排列

回溯三部曲

  • 递归函数参数

首先排列是有序的,也就是说 [1,2] 和 [2,1] 是两个集合,这和之前分析的子集以及组合所不同的地方

可以看出元素1在[1,2]中已经使用过了,但是在[2,1]中还要在使用一次1,可重复,所以处理排列问题就不用使用 startIndex 了。

但排列问题需要一个 used 数组,标记已经选择的元素,如图橘黄色部分所示:

全排列

代码如下:

List<List<Integer>> result = new ArrayList<>();
List<Integer> path = new LinkedList<>();
public void backtracking (int[] nums, bool[] used)
  • 递归终止条件

全排列

可以看出叶子节点,就是收割结果的地方。

那么什么时候,算是到达叶子节点呢?

当收集元素的数组 path 的大小达到和 nums 数组一样大的时候,说明找到了一个全排列,也表示到达了叶子节点。

代码如下:

// 此时说明找到了一组
if (path.size() == nums.length) {
    result.add(new ArrayList<>(path));
    return;
}
  • 单层搜索的逻辑

这里和 77.组合问题、 131.分割回文串 78.子集问题 最大的不同就是 for 循环里不用 startIndex了。

因为排列问题,每次都要从头开始搜索,例如元素1在[1,2]中已经使用过了,但是在[2,1]中还要再使用一次1。

而 used 数组,其实就是记录此时 path 里都有哪些元素使用了,一个排列里一个元素只能使用一次

代码如下:

for (int i = 0; i < nums.length; i++) {
    if(used[i] == true) continue; // path里已经收录的元素,直接跳过
    used[i] = true;
    path.add(nums[i]);
    backtracking(nums, used);
    path.removeLast();
    used[i] = false;
}

整体Java代码如下:

class Solution {

    List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合
    LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果
    boolean[] used;
    public List<List<Integer>> permute(int[] nums) {
        if (nums.length == 0){
            return result;
        }
        used = new boolean[nums.length];
        permuteHelper(nums);
        return result;
    }

    private void permuteHelper(int[] nums){
        if (path.size() == nums.length){
            result.add(new ArrayList<>(path));
            return;
        }
        for (int i = 0; i < nums.length; i++){
            if (used[i]){
                continue;
            }
            used[i] = true;
            path.add(nums[i]);
            permuteHelper(nums);
            path.removeLast();
            used[i] = false;
        }
    }
}
  • 时间复杂度: O(n!)
  • 空间复杂度: O(n)

拓展

不引入额外参数 used 其实也可以实现记录遍历过的参数,只需要调用 LinkedList.contains() 方法来判断 path 中是否存在该数字即可

// 解法2:通过判断path中是否存在数字,排除已经选择的数字
class Solution {
    List<List<Integer>> result = new ArrayList<>();
    LinkedList<Integer> path = new LinkedList<>();
    public List<List<Integer>> permute(int[] nums) {
        if (nums.length == 0) return result;
        backtrack(nums, path);
        return result;
    }
    public void backtrack(int[] nums, LinkedList<Integer> path) {
        if (path.size() == nums.length) {
            result.add(new ArrayList<>(path));
        }
        for (int i =0; i < nums.length; i++) {
            // 如果path中已有,则跳过
            if (path.contains(nums[i])) {
                continue;
            } 
            path.add(nums[i]);
            backtrack(nums, path);
            path.removeLast();
        }
    }
}

总结

大家此时可以感受出排列问题的不同:

  • 每层都是从 0 开始搜索而不是 startIndex
  • 需要 used 数组记录 path 里都放了哪些元素了

排列问题是回溯算法解决的经典题目,大家可以好好体会体会。


47.全排列 II

本题 就是讲过的 40.组合总和II 去重逻辑 和 46.全排列 的结合,重点看一下 拓展内容中的 used[i - 1] == true 也行,used[i - 1] == false 也行

力扣题目链接(opens new window)

给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。

示例 1:

  • 输入:nums = [1,1,2]
  • 输出: [[1,1,2], [1,2,1], [2,1,1]]

示例 2:

  • 输入:nums = [1,2,3]
  • 输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

提示:

  • 1 <= nums.length <= 8
  • -10 <= nums[i] <= 10

这道题目和 46.全排列 的区别在与给定一个可包含重复数字的序列,要返回所有不重复的全排列

这里又涉及到去重了。

40.组合总和Ⅱ90.子集Ⅱ 我们分别详细讲解了组合问题和子集问题如何去重。

那么排列问题其实也是一样的套路。

还要强调的是去重一定要对元素进行排序,这样我们才方便通过相邻的节点来判断是否重复使用了

我以示例中的 [1,1,2] 为例 (为了方便举例,已经排序)抽象为一棵树,去重过程如图:

47.全排列II1

图中我们对同一树层,前一位(也就是nums[i-1])如果使用过,那么就进行去重。

一般来说:组合问题和排列问题是在树形结构的叶子节点上收集结果,而子集问题就是取树上所有节点的结果

在 46.全排列 中已经详细讲解了排列问题的写法,在​​​​​​ ​40.组合总和Ⅱ90.子集Ⅱ 中详细讲解了去重的写法,所以这次我就不用回溯三部曲分析了,直接给出代码,如下:

class Solution {
    //存放结果
    List<List<Integer>> result = new ArrayList<>();
    //暂存结果
    List<Integer> path = new ArrayList<>();

    public List<List<Integer>> permuteUnique(int[] nums) {
        boolean[] used = new boolean[nums.length];
        Arrays.fill(used, false);
        Arrays.sort(nums);
        backTrack(nums, used);
        return result;
    }

    private void backTrack(int[] nums, boolean[] used) {
        if (path.size() == nums.length) {
            result.add(new ArrayList<>(path));
            return;
        }
        for (int i = 0; i < nums.length; i++) {
            // used[i - 1] == true,说明同⼀树⽀nums[i - 1]使⽤过
            // used[i - 1] == false,说明同⼀树层nums[i - 1]使⽤过
            // 如果同⼀树层nums[i - 1]使⽤过则直接跳过
            if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
                continue;
            }
            //如果同⼀树⽀nums[i]没使⽤过开始处理
            if (used[i] == false) {
                used[i] = true;//标记同⼀树⽀nums[i]使⽤过,防止同一树枝重复使用
                path.add(nums[i]);
                backTrack(nums, used);
                path.remove(path.size() - 1);//回溯,说明同⼀树层nums[i]使⽤过,防止下一树层重复
                used[i] = false;//回溯
            }
        }
    }
}

拓展

大家发现,去重最为关键的代码为:

if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
    continue;
}

如果改成 used[i - 1] == true, 也是正确的!,去重代码如下:

if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == true) {
    continue;
}

这是为什么呢,就是上面我刚说的,如果要对树层中前一位去重,就用used[i - 1] == false,如果要对树枝前一位去重用used[i - 1] == true

对于排列问题,树层上去重和树枝上去重,都是可以的,但是树层上去重效率更高!

这么说是不是有点抽象?

来来来,我就用输入: [1,1,1] 来举一个例子。

树层上去重(used[i - 1] == false),的树形结构如下:

47.全排列II2

树枝上去重(used[i - 1] == true)的树型结构如下:

47.全排列II3

大家应该很清晰的看到,树层上对前一位去重非常彻底,效率很高,树枝上对前一位去重虽然最后可以得到答案,但是做了很多无用搜索

总结

这道题其实还是用了我们之前讲过的去重思路,但有意思的是,去重的代码中,这么写:

if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
    continue;
}

和这么写:

if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == true) {
    continue;
}

都是可以的,这也是很多同学做这道题目困惑的地方,知道 used[i - 1] == false 也行而 used[i - 1] == true 也行,但是就想不明白为啥。

所以我通过举[1,1,1]的例子,把这两个去重的逻辑分别抽象成树形结构,大家可以一目了然:为什么两种写法都可以以及哪一种效率更高!

这里可能大家又有疑惑,既然 used[i - 1] == false也行而used[i - 1] == true也行,那为什么还要写这个条件呢?

直接这样写 不就完事了?

if (i > 0 && nums[i] == nums[i - 1]) {
    continue;
}

其实并不行,一定要加上 used[i - 1] == false 或者 used[i - 1] == true因为 used[i - 1] 要一直是 true 或者一直是false 才可以,而不是 一会是true 一会又是false。 所以这个条件要写上。

是不是豁然开朗了!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2071364.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【学习笔记】时间序列模型(ARIMA)

文章目录 前言一、时间序列时间序列数据 二、ARIMA 模型大纲模型前提平稳性检验 差分整合移动平均自回归模型 ARIMA(p,q,d)自回归模型 (AR( p ))移动平均模型 (MA( q ))自回归移动平均模型(ARMA(p,q))差分自回归移动平均模型 ARIMA(p,d,q) 确定 p&#xff0c;q结果分析和模型检…

SpringBoot集成kafka-消费者批量消费消息

SpringBoot集成kafka-消费者批量消费消息 1、消费者2、生产者3、application.yml配置文件4、实体类5、生产者发送消息测试类6、测试6.1、测试启动生产者6.2、测试启动消费者 1、消费者 设置批量接收消息 package com.power.consumer;import org.apache.kafka.clients.consume…

IC-Light容器构建详细指南

一、介绍 IC-Light 是一个操纵图像照明的项目&#xff0c;能够让一张普普通通的照片焕发光彩。 IC-Light&#xff0c;全称为“Imposing Consistent Light”&#xff0c;是一款由 AI 图像处理专家张吕敏&#xff08;ControlNet 的作者&#xff09;精心开发的创新工具。主要用于…

启用 UFW 防火墙后如何打开 80 和 443 端口?

UFW&#xff08;Uncomplicated Firewall&#xff09;是一款 Linux 系统上用户友好的管理防火墙规则的工具。它简化了控制网络流量的过程&#xff0c;使用户更容易开放或阻止端口。 本文将引导您使用 UFW 打开端口 80 (HTTP) 和 443 (HTTPS) 端口。您将了解如何启用这些端口&am…

uni-app项目搭建和模块介绍

工具:HuilderX noed版本:node-v17.3.1 npm版本:8.3.0 淘宝镜像:https://registry.npmmirror.com/ 未安装nodejs可以进入这里https://blog.csdn.net/a1241436267/article/details/141326585?spm1001.2014.3001.5501 目录 1.项目搭建​编辑 2.项目结构 3.使用浏览器运行…

华为Cloud连接配置

Cloud(云)连接意思为本地电脑和eNSP中的虚拟的VRP系统连接的 配置Cloud 先添加UDP 再添加需要使用的网卡 网卡建议使用虚拟机的网卡&#xff0c;如果没有虚拟机也可以使用其他网卡&#xff0c;自己设定一下IP就行 端口映射设置 配置R1 [R1]int e0/0/0 [R1-Ethernet0/0/0]ip …

B. 不知道该叫啥

题意&#xff1a;求长度为n的数列方案数&#xff0c;数列需满足两个条件&#xff1a;1.均为正整数。2.相邻两个数乘积不能超过m 思路&#xff1a;考虑dp。 设表示前i个点以j结尾的方案数&#xff0c;则有&#xff1a; 可以得出&#xff1a; 双指针数论分块解决。把每个m/i相…

一个下载镜像非常快的网站--华为云

1、镜像的下载飞速 链接&#xff1a;mirrors.huaweicloud.com/ubuntu-releases/24.04/ 下载一个的ubuntu24.04的镜像文件&#xff0c;5.7G的大文件&#xff0c;不到1分钟就下完毕了&#xff0c; 比起阿里云下载的速度600K/S,这个速度是100多倍。 非常的神速&#xff0c;非常…

如何选择高品质科研实验室用太阳光模拟器

概述 太阳光模拟器是一种能够模拟太阳光照射条件的设备&#xff0c;主要用于实验室环境中对太阳能相关材料和设备进行性能测试。这类模拟器能够提供与自然太阳光谱相似的光照&#xff0c;同时还能精确控制光照强度和照射角度&#xff0c;以满足不同测试需求。 对于被归类为太…

Leetcode 104. 二叉树的最大深度 C++实现

Leetcode 104. 二叉树的最大深度 问题&#xff1a;给定一个二叉树root&#xff0c;返回其最大深度。 二叉树的最大深度是指从根节点到最远叶子节点的最长路径上的节点数。 /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* …

【Linux篇】Linux的用户和权限

目录 1. 认识Linux的root用户&#xff08;超级管理员&#xff09; 1.1 介绍 1.2 su命令和exit命令 1.3 sudo命令 为普通用户配置sudo认证 2. 用户与用户组 2.1 用户组管理 2.2 用户管理 2.3 getent命令 3. 查看权限控制信息 3.1 认知权限信息 3.2 rwx含义 r&#x…

巴恩斯利蕨数学公式及源码实现——JavaScript版

为什么要写这篇文章 本篇接《张侦毅&#xff1a;巴恩斯利蕨数学公式及源码实现》。之前文章中源码的编程语言用的是Java&#xff0c;JDK的版本为8&#xff0c;现在我的JDK版本已经升级到22了&#xff0c;在新版本JDK中&#xff0c;原来的JApplet方法已经被废弃&#xff0c;不能…

云原生之全链路分布式跟踪系统 Zipkin和SkyWalking

贪多嚼不烂 Pinpoint 就不对比了 参考 APM系统简单对比(zipkin,pinpoint和skywalking) springcloud 看云 Zipkin和SkyWalking都是流行的分布式跟踪系统&#xff0c;但它们的设计和实现有明显的不同。 以下是它们之间的一些对比&#xff1a; 数据存储&#xff1a; Zipk…

Linux与Windows的文件与目录操作API汇总整理

文件和目录操作是编程中非常基础且常用的部分&#xff0c;涉及到文件的创建、读写、删除以及目录的创建、删除等功能。下面是文件和目录操作的汇总整理&#xff0c;包括常见的API及其用途&#xff1a; 文件操作 POSIX 系统&#xff08;如 Linux 和 macOS&#xff09; 打开文件…

Python二级知识点

在阅读之前&#xff0c;感谢大家的关注和点赞。祝你们都能心想事成、健健康康。 一.数据流程图 一般这道题是经常考的&#xff0c;有向箭头--->表示数据流。圆圈○表示加工处理。 二.字典如何比较大小 字典类型是如何比较大小的呢&#xff0c;是使用字典的键来比较大小&…

Python 使用everything的相关模块,创建极其快速的文件搜索和管理工具

在这篇博客中&#xff0c;我将分享如何使用 Python 的 everytools库构建一个简单的文件搜索和管理工具。这个工具允许用户搜索文件、查看文件路径、导出文件信息到 Excel&#xff0c;以及生成配置文件。 C:\pythoncode\new\everythingtools.py 项目概述 这个工具的主要功能包…

mysql binlog 全量与增量备份

mysql binlog 全量与增量备份 mysql binlog常用操作 https://blog.csdn.net/xyy1028/article/details/124446625 mysqldump mysqlbinlog 增量备份 mysql的增量备份 https://blog.51cto.com/u_16213572/10976496 mysql全量备份与增量备份 — vip https://blog.51cto.com/hehe1…

Java学习_20_File以及IO流

文章目录 前言一、FileFile中常见的成员方法判断和获取创建和删除获取和遍历 二、IO流IO流体系结构字节流字节输出流&#xff1a;FileOutputStream字节输入流FileInputStrea文件拷贝try……catch异常处理中文乱码现象 字符流字符流读取FileReader字符流输出FileWriter底层原理 …

堆《数据结构》

堆《数据结构》 1. 堆排序1.1 建堆向上调整建堆向下调整建堆 1.2 利用堆删除思想来进行排序1.3Top-k问题 2.堆的时间复杂度 1. 堆排序 1.1 建堆 建大堆 建小堆 向上调整建堆 AdjustUp建堆 void AdjustUp(HPDataType* a, int child) {// 初始条件// 中间过程// 结束条件int p…

专利权和版权有什么区别?

专利权和版权有什么区别&#xff1f;