笔记小结:《利用pytthon进行数据分析》之使用pandas和seaborn绘图

news2025/1/20 16:31:18

matplotlib实际上是一种比较低级的工具。要绘制一张图表,你组装一些基本组件就行:数据展示(即图表类型:线型图、柱状图、盒形图、散布图、等值线图等)、图例、标题、刻度标签以及其他注解型信息。

在pandas中,我们有多列数据,还有行和列标签。pandas自身就有内置的方法,用于简化从DataFrame和Series绘制图形。另一个库seaborn(https://seaborn.pydata.org/),由Michael Waskom创建的静态图形库。Seaborn简化了许多常见可视类型的创建。

提示:引入seaborn会修改matplotlib默认的颜色方案和绘图类型,以提高可读性和美观度。即使你不使用seaborn API,你可能也会引入seaborn,作为提高美观度和绘制常见matplotlib图形的简化方法。

线型图

Series和DataFrame都有一个用于生成各类图表的plot方法。默认情况下,它们所生成的是线型图(如图9-13所示):

In [60]: s = pd.Series(np.random.randn(10).cumsum(), index=np.arange(0, 100, 10))
In [61]: s.plot()

该Series对象的索引会被传给matplotlib,并用以绘制X轴。可以通过use_index=False禁用该功能。X轴的刻度和界限可以通过xticks和xlim选项进行调节,Y轴就用yticks和ylim。plot参数的完整列表请参见表9-3。我只会讲解其中几个,剩下的就留给读者自己去研究了。

9.2 使用pandas和seaborn绘图 - 图2

表9-3 Series.plot方法的参数

pandas的大部分绘图方法都有一个可选的ax参数,它可以是一个matplotlib的subplot对象。这使你能够在网格布局中更为灵活地处理subplot的位置。

DataFrame的plot方法会在一个subplot中为各列绘制一条线,并自动创建图例(如图9-14所示):

In [62]: df = pd.DataFrame(np.random.randn(10, 4).cumsum(0),
   ....:                   columns=['A', 'B', 'C', 'D'],
   ....:                   index=np.arange(0, 100, 10))
In [63]: df.plot()

plot属性包含一批不同绘图类型的方法。例如,df.plot()等价于df.plot.line()。后面会学习这些方法。

笔记:plot的其他关键字参数会被传给相应的matplotlib绘图函数,所以要更深入地自定义图表,就必须学习更多有关matplotlib API的知识。

DataFrame还有一些用于对列进行灵活处理的选项,例如,是要将所有列都绘制到一个subplot中还是创建各自的subplot。详细信息请参见表9-4。

表9-4 专用于DataFrame的plot参数

 

柱状图

plot.bar()和plot.barh()分别绘制水平和垂直的柱状图。这时,Series和DataFrame的索引将会被用作X(bar)或Y(barh)刻度(如图9-15所示):

In [64]: fig, axes = plt.subplots(2, 1)
In [65]: data = pd.Series(np.random.rand(16), index=list('abcdefghijklmnop'))
In [66]: data.plot.bar(ax=axes[0], color='k', alpha=0.7)
Out[66]: <matplotlib.axes._subplots.AxesSubplot at 0x7fb62493d470>
In [67]: data.plot.barh(ax=axes[1], color='k', alpha=0.7)

color=’k’和alpha=0.7设定了图形的颜色为黑色,并使用部分的填充透明度。对于DataFrame,柱状图会将每一行的值分为一组,并排显示,如图9-16所示:

In [69]: df = pd.DataFrame(np.random.rand(6, 4),
   ....:                   index=['one', 'two', 'three', 'four', 'five', 'six'],
   ....:                   columns=pd.Index(['A', 'B', 'C', 'D'], name='Genus'))
In [70]: df
Out[70]: 
Genus         A         B         C         D
one    0.370670  0.602792  0.229159  0.486744
two    0.420082  0.571653  0.049024  0.880592
three  0.814568  0.277160  0.880316  0.431326
four   0.374020  0.899420  0.460304  0.100843
five   0.433270  0.125107  0.494675  0.961825
six    0.601648  0.478576  0.205690  0.560547
In [71]: df.plot.bar()

注意,DataFrame各列的名称”Genus”被用作了图例的标题。

设置stacked=True即可为DataFrame生成堆积柱状图,这样每行的值就会被堆积在一起(如图9-17所示):

In [73]: df.plot.barh(stacked=True, alpha=0.5)

再以本书前面用过的那个有关小费的数据集为例,假设我们想要做一张堆积柱状图以展示每天各种聚会规模的数据点的百分比。我用read_csv将数据加载进来,然后根据日期和聚会规模创建一张交叉表:

In [75]: tips = pd.read_csv('examples/tips.csv')
In [76]: party_counts = pd.crosstab(tips['day'], tips['size'])
In [77]: party_counts
Out[77]: 
size  1   2   3   4  5  6
day                      
Fri   1  16   1   1  0  0
Sat   2  53  18  13  1  0
Sun   0  39  15  18  3  1
Thur  1  48   4   5  1  3
# Not many 1- and 6-person parties
In [78]: party_counts = party_counts.loc[:, 2:5]

然后进行规格化,使得各行的和为1,并生成图表(如图9-18所示):

# Normalize to sum to 1
In [79]: party_pcts = party_counts.div(party_counts.sum(1), axis=0)
In [80]: party_pcts
Out[80]: 
size         2         3         4         5
day                                         
Fri   0.888889  0.055556  0.055556  0.000000
Sat   0.623529  0.211765  0.152941  0.011765
Sun   0.520000  0.200000  0.240000  0.040000
Thur  0.827586  0.068966  0.086207  0.017241
In [81]: party_pcts.plot.bar()

于是,通过该数据集就可以看出,聚会规模在周末会变大。

对于在绘制一个图形之前,需要进行合计的数据,使用seaborn可以减少工作量。用seaborn来看每天的小费比例(图9-19是结果):

In [83]: import seaborn as sns
In [84]: tips['tip_pct'] = tips['tip'] / (tips['total_bill'] - tips['tip'])
In [85]: tips.head()
Out[85]: 
   total_bill   tip smoker  day    time  size   tip_pct
0       16.99  1.01     No  Sun  Dinner     2  0.063204
1       10.34  1.66     No  Sun  Dinner     3  0.191244
2       21.01  3.50     No  Sun  Dinner     3  0.199886
3       23.68  3.31     No  Sun  Dinner     2  0.162494
4       24.59  3.61     No  Sun  Dinner     4  0.172069
In [86]: sns.barplot(x='tip_pct', y='day', data=tips, orient='h')

seaborn的绘制函数使用data参数,它可能是pandas的DataFrame。其它的参数是关于列的名字。因为一天的每个值有多次观察,柱状图的值是tip_pct的平均值。绘制在柱状图上的黑线代表95%置信区间(可以通过可选参数配置)。

seaborn.barplot有颜色选项,使我们能够通过一个额外的值设置(见图9-20):

In [88]: sns.barplot(x='tip_pct', y='day', hue='time', data=tips, orient='h')

注意,seaborn已经自动修改了图形的美观度:默认调色板,图形背景和网格线的颜色。你可以用seaborn.set在不同的图形外观之间切换:

In [90]: sns.set(style="whitegrid")

直方图和密度图

直方图(histogram)是一种可以对值频率进行离散化显示的柱状图。数据点被拆分到离散的、间隔均匀的面元中,绘制的是各面元中数据点的数量。再以前面那个小费数据为例,通过在Series使用plot.hist方法,我们可以生成一张“小费占消费总额百分比”的直方图(如图9-21所示):

In [92]: tips['tip_pct'].plot.hist(bins=50)

与此相关的一种图表类型是密度图,它是通过计算“可能会产生观测数据的连续概率分布的估计”而产生的。一般的过程是将该分布近似为一组核(即诸如正态分布之类的较为简单的分布)。因此,密度图也被称作KDE(Kernel Density Estimate,核密度估计)图。使用plot.kde和标准混合正态分布估计即可生成一张密度图(见图9-22):

In [94]: tips['tip_pct'].plot.density()

seaborn的distplot方法绘制直方图和密度图更加简单,还可以同时画出直方图和连续密度估计图。作为例子,考虑一个双峰分布,由两个不同的标准正态分布组成(见图9-23):

In [96]: comp1 = np.random.normal(0, 1, size=200)
In [97]: comp2 = np.random.normal(10, 2, size=200)
In [98]: values = pd.Series(np.concatenate([comp1, comp2]))
In [99]: sns.distplot(values, bins=100, color='k')

散布图或点图

点图或散布图是观察两个一维数据序列之间的关系的有效手段。在下面这个例子中,我加载了来自statsmodels项目的macrodata数据集,选择了几个变量,然后计算对数差:

In [100]: macro = pd.read_csv('examples/macrodata.csv')
In [101]: data = macro[['cpi', 'm1', 'tbilrate', 'unemp']]
In [102]: trans_data = np.log(data).diff().dropna()
In [103]: trans_data[-5:]
Out[103]: 
          cpi        m1  tbilrate     unemp
198 -0.007904  0.045361 -0.396881  0.105361
199 -0.021979  0.066753 -2.277267  0.139762
200  0.002340  0.010286  0.606136  0.160343
201  0.008419  0.037461 -0.200671  0.127339
202  0.008894  0.012202 -0.405465  0.042560

然后可以使用seaborn的regplot方法,它可以做一个散布图,并加上一条线性回归的线(见图9-24):

In [105]: sns.regplot('m1', 'unemp', data=trans_data)
Out[105]: <matplotlib.axes._subplots.AxesSubplot at 0x7fb613720be0>
In [106]: plt.title('Changes in log %s versus log %s' % ('m1', 'unemp'))

在探索式数据分析工作中,同时观察一组变量的散布图是很有意义的,这也被称为散布图矩阵(scatter plot matrix)。纯手工创建这样的图表很费工夫,所以seaborn提供了一个便捷的pairplot函数,它支持在对角线上放置每个变量的直方图或密度估计(见图9-25):

In [107]: sns.pairplot(trans_data, diag_kind='kde', plot_kws={'alpha': 0.2})

你可能注意到了plot_kws参数。它可以让我们传递配置选项到非对角线元素上的图形使用。对于更详细的配置选项,可以查阅seaborn.pairplot文档字符串。

分面网格(facet grid)和类型数据

要是数据集有额外的分组维度呢?有多个分类变量的数据可视化的一种方法是使用小面网格。seaborn有一个有用的内置函数factorplot,可以简化制作多种分面图(见图9-26):

 In [108]: sns.factorplot(x='day', y='tip_pct', hue='time', col='smoker',
   .....:                kind='bar', data=tips[tips.tip_pct < 1])

除了在分面中用不同的颜色按时间分组,我们还可以通过给每个时间值添加一行来扩展分面网格:

In [109]: sns.factorplot(x='day', y='tip_pct', row='time',
   .....:                col='smoker',
   .....:                kind='bar', data=tips[tips.tip_pct < 1])

factorplot支持其它的绘图类型,你可能会用到。例如,盒图(它可以显示中位数,四分位数,和异常值)就是一个有用的可视化类型(见图9-28):

In [110]: sns.factorplot(x='tip_pct', y='day', kind='box',
   .....:                data=tips[tips.tip_pct < 0.5])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2069769.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

polarctf靶场[CRYPTO]显而易见的密码、[CRYPTO]夏多的梦、[CRYPTO]再这么说话我揍你了、[CRYPTO]神秘组织M

[CRYPTO]显而易见的密码 考点&#xff1a;ntlm编码 打开文件&#xff0c;显示内容就是ntlm格式 ntlm解密 在线网站&#xff1a; https://www.cmd5.com/便可得到flag [CRYPTO]夏多的梦 根据题目提示可以猜测为夏多密码 考点&#xff1a;夏多密码 在线加密原理网站&#x…

如何使用ssm实现应急资源管理系统

TOC ssm074应急资源管理系统jsp 绪论 1.1 研究背景 当前社会各行业领域竞争压力非常大&#xff0c;随着当前时代的信息化&#xff0c;科学化发展&#xff0c;让社会各行业领域都争相使用新的信息技术&#xff0c;对行业内的各种相关数据进行科学化&#xff0c;规范化管理。…

WEB渗透Win提权篇-RDPFirewall

爆破RDP Hydra爆破RDP >hydra -l admin -P /root/Desktop/passwords -S 192.168.0.0 rdpNlbrute MSF开启 >run post/windows/manage/enable_rdp多用户登陆 Mimikatz设置允许多用户登录 >privilege::debug >ts::multirdprdpwrap GitHub - stascorp/rdpwrap: RD…

用5点结构标定3点结构的顺序

在行列可自由变换的条件下&#xff0c;5点结构有34个 (A,B)---6*30*2---(0,1)(1,0) 让A分别是5a1&#xff0c;2&#xff0c;…&#xff0c;34&#xff0c;让B全是0。当收敛误差为7e-4&#xff0c;收敛199次取迭代次数平均值&#xff0c;得到 迭代次数 搜索难度 1 3683.965 …

上市公司绿色企业识别数据集(2016-2023年)

数据来源&#xff1a;本数据来源于中国债券信息网和企业年报&#xff0c;参考张小可老师等&#xff08;2024&#xff09;做法&#xff0c;根据上市公司是否发行过绿色债券来认定绿色企业的身份。经过对2016-2023年间发行过绿色债券的企业进行人工统计后&#xff0c;共有164家被…

大模型提示词工程和落地思考

本文是一篇内部的个人分享&#xff08;已无敏感信息&#xff09; &#xff0c;目的是增加产品、开发同学对 LLM 的理解&#xff0c;以降低沟通中的阻力&#xff0c;更好推进落地。 以下经脱敏后的原文: 大模型并不神奇 很多人听到’大模型’这个词可能会觉得很神秘&#xff…

Spring Boot 集成 swagger 3.0 指南

Spring Boot 集成 swagger 3.0 指南 一、Swagger介绍1.springfox-swagger 22.SpringFox 3.0.0 发布 二、Spring Boot 集成 swagger 3.01. 添加Maven依赖2. 创建配置类配置Swagger2.1 创建SwaggerConfig 配置类2.1 创建TestInfoConfig信息配置类 3. 在你的Controller上添加swagg…

【深度学习与NLP】——最全环境配置总指南

目录 一、Anaconda 的环境准备 1.下载和安装 1.1. 下载 1.1.1. 官网下载 1.1.2. 镜像站下载&#xff08;官网下载速度慢可选&#xff09; 1.2. 安装 2. 环境配置 2.1 Windows 平台 2.2 MacOS 和 Linux 平台 3. 环境验证 3.1 Windows 平台 3.2 MacOS 和 Linux 平台 …

34集-35集 【完整版小白上手环境搭建】玩转ESP-ADF实现AIGC大模型对话功能-1-《MCU嵌入式AI开发笔记》

34集-35集 【完整版小白上手环境搭建】玩转ESP-ADF实现AIGC大模型对话功能-1-《MCU嵌入式AI开发笔记》 参考文档&#xff1a; 1、ESP32-S3-Korvo-2 V3.0的说明文档&#xff1a; https://espressif-docs.readthedocs-hosted.com/projects/esp-adf/zh-cn/latest/design-guide/d…

浪潮信息AIStation V5:一站式解决大模型挑战

7月9日&#xff0c;浪潮信息在济南“元脑中国行”巡展上隆重发布了AIStation V5升级版人工智能开发平台&#xff0c;该平台凭借全面的大模型流程支持能力&#xff0c;旨在为企业用户简化大模型构建与微调流程&#xff0c;提供标准化、安全可靠的推理服务&#xff0c;并通过优化…

[创业之路-142] :生产 - 产品名称、型号、物料编码、批次、产品结构、BOM单、SN序列号、SOP、版本、回溯等常见概念之间的相互的结构化关系。

目录 一、概念定义 1. 产品型号 2. 批次 3. 产品结构 4. 编码 5. 序列号 6. 版本 7. 物料编码 8. BOM单&#xff08;物料清单&#xff09; 9. 回溯 二、命名规则 2.1 产品型号命名规则 1、基本原则 2、命名要素 3、命名规则示例 4、注意事项 2.2 产品批次命名…

开放式耳机的优缺点?2024五款性能出色产品力荐!

开放式耳机以其独特的设计和使用体验在市场上逐渐受到欢迎。它们的主要优点包括提供舒适的佩戴感受和自然的声音表现&#xff0c;允许外界声音进入&#xff0c;从而在享受音乐的同时保持对周围环境的感知&#xff0c;特别适合户外运动或需要对周围环境保持警觉的场合。此外&…

android studio iguana monitor

android stuido 更新后很多菜单找不到了 其实都在view里面 但是还是没有Monitor 看不到设备的存储 新版本中确实没有 不用找了 Android Device Monitor | Android Studio | Android Developers 用这个 To open the Device Explorer, select View > Tool Windows >…

深圳表哥告诉你“上位机和SCADA的区别”

1、啥是上位机 ‌上位机&#xff08;Upper Computer&#xff09;是指‌可以直接发出操控命令的计算机‌&#xff0c;通常是主控计算机或监控系统&#xff0c;用于对整个控制系统进行监控和操作。上位机通过通信接口与下位机进行数据交换&#xff0c;发送控制命令并接收反馈数据…

如何使用 SQL Server 内置函数实现MD5加密

目录 前言 一、MD5加密 1、MD5加密的特点 2、MD5加密的应用场景 3、为什么MD5有用 二、使用 MD5 三、MD5加密示例 四、SQL截取字符串substring 总结 最后 前言 在互联网时代&#xff0c;我们的数据基本都是在暴露在外面&#xff0c;数据安全变得越来越重要。我们经常需…

网络接口(2)

一、粘包问题 原因&#xff1a;tcp流式套接字&#xff0c;数据与数据之间没有边界感&#xff0c;导致可能多次的数据粘到一起 解决办法&#xff1a; &#xff08;1&#xff09;、规定间隔符&#xff0c;如&#xff1a;“ \r\n”等&#xff1b; &#xff08;2&#xff09;、…

河道漂浮物监测识别摄像机

近年来&#xff0c;河道和湖泊污染日益严重&#xff0c;漂浮物的监测与识别成为一项迫切需要解决的环境问题。针对这一问题&#xff0c;科技人员研发了河道漂浮物监测识别摄像机。 河道漂浮物监测识别摄像机利用先进的图像识别技术&#xff0c;通过智能算法&#xff0c;可以在河…

动态规划-打家劫舍Ⅱ

该题是打家劫舍Ⅰ的升级版并与其相关&#xff0c;如果对其感兴趣的话可以先看看打家劫舍Ⅰ 题目描述 一个专业的小偷&#xff0c;计划偷窃一个环形街道上沿街的房屋&#xff0c;每间房内都藏有一定的现金。这个地方所有的房屋都围成一圈 &#xff0c;这意味着第一个房屋和最后…

深度学习(10)---Vision Transformer详解

文章目录 一、简介二、模型结构2.1 整体架构2.2 Linear Projection of Flattened Patches2.3 Transformer Encoder2.4 MLP Head 三、ViT模型搭建参数四、思考题 一、简介 1. Vision Transformer&#xff08;ViT&#xff09;是一种基于Transformer架构的深度学习模型&#xff0c…

UE基础 —— Playing and Simulating

目录 Play In Editor 运行&#xff08;Play&#xff09; Play Modes PIE Console Simulate In Editor 可以随时在虚幻编辑器中预览游戏&#xff0c;无需将其构建为独立的应用程序&#xff1b;能快速调整游戏玩法和资产&#xff0c;并了解相应调整带来的结果&#xff1b; …