C++设计模式1:单例模式(懒汉模式和饿汉模式,以及多线程问题处理)

news2025/2/27 2:54:12

饿汉单例模式

        程序还没有主动获取实例对象,该对象就产生了,也就是程序刚开始运行,这个对象就已经初始化了。 

class Singleton
{
public:
	~Singleton()
	{
		std::cout << "~Singleton()" << std::endl;
	}
	static Singleton* get_instance()
	{
		return &singleton;
	}
private:
	Singleton() {};
	Singleton(const Singleton& othersingle) = delete;
	Singleton& operator=(const Singleton& othersingle) = delete;
	static Singleton singleton;
};
Singleton Singleton::singleton;//类的静态成员变量要在类外定义
int main()
{
	Singleton* s1 = Singleton::get_instance();
	Singleton* s2 = Singleton::get_instance();
	Singleton* s3 = Singleton::get_instance();
	std::cout << "s1:" << s1 << std::endl;
	std::cout << "s2:" << s2 << std::endl;
	std::cout << "s3:" << s3 << std::endl;
}

        显然饿汉模式是线程安全的,因为单例对象的初始化发生在.bss段,和栈无关,而线程的启动依赖于函数,函数需要开辟栈内存,所以是线程安全的。但是饿汉模式也有缺点,如果这个单例类的构造函数过于复杂,包含了线程和数据库等等一系列的初始化过程,需要进行大量操作,就会导致程序启动变慢。

运行结果如下:    三个对象的地址是一样的,说明是同一个对象,并且最后也只是析构了一次。

 懒汉模式

实例对象直到程序中有模块获取它时,才会初始化这个对象。

#include<iostream>
class Singleton
{
public:
	~Singleton()
	{
		std::cout << "~Singleton()" << std::endl;
	}
	static Singleton* get_instance()
	{
		if (singleton == nullptr)
		{
			singleton = new Singleton();
		}
		return singleton;
	}
private:
	Singleton() {};
	Singleton(const Singleton& othersingle) = delete;
	Singleton& operator=(const Singleton& othersingle) = delete;
	static Singleton* singleton;
};
Singleton* Singleton::singleton=nullptr;//类的静态成员变量要在类外定义
int main()
{
	Singleton* s1 = Singleton::get_instance();
	Singleton* s2 = Singleton::get_instance();
	Singleton* s3 = Singleton::get_instance();
	std::cout << "s1:" << s1 << std::endl;
	std::cout << "s2:" << s2 << std::endl;
	std::cout << "s3:" << s3 << std::endl;
}

运行结果。 

         上面这种写法显然是线程不安全的,因为要构造一个单例,构造函数里面可能需要进行大量的操作。这段代码就会产生竞态条件,我们需要通过线程间的互斥操作来解决。

#include<iostream>
#include<memory>
#include<thread>
#include<mutex>
std::mutex mtx;
class Singleton
{
public:
	~Singleton()
	{
		std::cout << "~Singleton()" << std::endl;
	}
	static Singleton* get_instance()
	{
		std::lock_guard<std::mutex>loc(mtx);
		if (singleton == nullptr)
		{
			singleton = new Singleton();
		}
		return singleton;
	}
private:
	Singleton() {};
	Singleton(const Singleton& othersingle) = delete;
	Singleton& operator=(const Singleton& othersingle) = delete;
	static Singleton* singleton;
};
Singleton* Singleton::singleton=nullptr;//类的静态成员变量要在类外定义
int main()
{
	Singleton* s1 = Singleton::get_instance();
	Singleton* s2 = Singleton::get_instance();
	Singleton* s3 = Singleton::get_instance();
	std::cout << "s1:" << s1 << std::endl;
	std::cout << "s2:" << s2 << std::endl;
	std::cout << "s3:" << s3 << std::endl;
}

         这种写法虽然可以解决问题,但是加锁的位置,对程序的性能损耗较大,每次要先拿到锁才去判断是否为nullptr,如果不是,这把锁就白拿了,换一下加锁的位置。

        

#include<iostream>
#include<memory>
#include<thread>
#include<mutex>
std::mutex mtx;
class Singleton
{
public:
	~Singleton()
	{
		std::cout << "~Singleton()" << std::endl;
	}
	static Singleton* get_instance()
	{
		if (singleton == nullptr)
		{
			std::lock_guard<std::mutex>loc(mtx);
			singleton = new Singleton();
		}
		return singleton;
	}
private:
	Singleton() {};
	Singleton(const Singleton& othersingle) = delete;
	Singleton& operator=(const Singleton& othersingle) = delete;
	static Singleton* singleton;
};
Singleton* Singleton::singleton=nullptr;//类的静态成员变量要在类外定义
int main()
{
	Singleton* s1 = Singleton::get_instance();
	Singleton* s2 = Singleton::get_instance();
	Singleton* s3 = Singleton::get_instance();
	std::cout << "s1:" << s1 << std::endl;
	std::cout << "s2:" << s2 << std::endl;
	std::cout << "s3:" << s3 << std::endl;
}

        这次加锁位置明显可以减少程序的性能损耗,但是会出现一个问题,假如开始单例是nullptr,一个线程通过if语句,并且拿到了锁,它只是开辟了内存,并且构造了单例对象,但是构造过程没有执行完全,还没有给这个单例对象赋值, 这时候这个单例还是nullptr,另一个线程这时候也可以通过if语句了,因为单例是nullptr,但是它不能构造单例,因为没有拿到锁,这时候第一个线程给单例赋值完成后,释放了锁,第二个线程拿到锁,就又构造了一次单例。

        要解决这个问题也简单,那就是双重if语句判断。

#include<iostream>
#include<memory>
#include<thread>
#include<mutex>
std::mutex mtx;
class Singleton
{
public:
	~Singleton()
	{
		std::cout << "~Singleton()" << std::endl;
	}
	static Singleton* get_instance()
	{
		if (singleton == nullptr)
		{
			std::lock_guard<std::mutex>loc(mtx);
			if (singleton == nullptr)
			{
				singleton = new Singleton();
			}
		}
		return singleton;
	}
private:
	Singleton() {};
	Singleton(const Singleton& othersingle) = delete;
	Singleton& operator=(const Singleton& othersingle) = delete;
	static Singleton* singleton;
};
Singleton* Singleton::singleton=nullptr;//类的静态成员变量要在类外定义
int main()
{
	Singleton* s1 = Singleton::get_instance();
	Singleton* s2 = Singleton::get_instance();
	Singleton* s3 = Singleton::get_instance();
	std::cout << "s1:" << s1 << std::endl;
	std::cout << "s2:" << s2 << std::endl;
	std::cout << "s3:" << s3 << std::endl;
}

运行结果还是一样的。

        如果我们要简化上面的写法呢?我们可以使用到函数静态局部变量的初始化机制,函数静态局部变量在初始化的时候,底层的汇编指令会自动添加上线程互斥的指令,就可以省去我们加锁的步骤了。而且只有当程序主动调用get_instance函数的时候,单例才会被初始化,也省去了我们的nullptr双重判断了。

#include<iostream>
#include<memory>
#include<thread>
#include<mutex>
std::mutex mtx;
class Singleton
{
public:
	~Singleton()
	{
		std::cout << "~Singleton()" << std::endl;
	}
	static Singleton* get_instance()
	{
		static Singleton singleton;
		return &singleton;
	}
private:
	Singleton() {};
	Singleton(const Singleton& othersingle) = delete;
	Singleton& operator=(const Singleton& othersingle) = delete;
	static Singleton* singleton;
};
int main()
{
	Singleton* s1 = Singleton::get_instance();
	Singleton* s2 = Singleton::get_instance();
	Singleton* s3 = Singleton::get_instance();
	std::cout << "s1:" << s1 << std::endl;
	std::cout << "s2:" << s2 << std::endl;
	std::cout << "s3:" << s3 << std::endl;
}

运行效果一样。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2064418.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

KUKA KR C2 中文操作指南 详情见目录

KUKA KR C2 中文操作指南 详情见目录

Selenium + Python 自动化测试22(PO+数据驱动)

我们的目标是&#xff1a;按照这一套资料学习下来&#xff0c;大家可以独立完成自动化测试的任务。 上一篇我们讨论了PO模式和unittest框架结合起来使用。 本篇文章我们综合一下之前学习的内容&#xff0c;如先将PO模式、数据驱动思想和我们生成HTML报告融合起来&#xff0c;综…

​2024年AI新蓝海:三门生意如何借AI之力,开启变现新篇章

【导语】在这个日新月异的时代&#xff0c;人工智能&#xff08;AI&#xff09;已不再是遥不可及的未来科技&#xff0c;而是正逐步渗透到我们生活的方方面面&#xff0c;成为推动产业升级的重要力量。你是否还在为传统行业的未来而忧虑&#xff1f;别担心&#xff0c;AI正以其…

Pandas DataFrame 数据转换处理和多条件查询

工作中需要处理一个比较大的数据&#xff0c;且当中需要分析的日期类型字段为字符串型&#xff0c;需要进行转换&#xff0c;获得一个新的字段用于时间统计。我们应用 datetime.datetime.strptime 函数进行转换。 数据读取与时间列补充代码如下&#xff1a; import pandas as…

原来ChatGPT是这么评价《黑神话:悟空》的啊?

《黑神话&#xff1a;悟空》一经上线便迅速吸引了全球的目光&#xff0c;成为了今日微博热搜榜上的焦点话题。作为中国首款现象级的中国3A大作&#xff0c;它的发布无疑引发了广泛的关注与讨论。 《黑神话&#xff1a;悟空》&#xff0c;这款3A国产游戏大作&#xff0c;由国内游…

根据状态的不同,显示不同的背景颜色

文章目录 前言HTML模板部分JavaScript部分注意&#xff1a;主要差异影响如何处理示例 总结 前言 提示&#xff1a;这里可以添加本文要记录的大概内容&#xff1a; 实现效果&#xff1a; 提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例可供参考 根据给定的状态…

文件操作2(函数的专栏)

1、文件的打开和关闭 1.1文件指针 在缓冲文件系统中&#xff0c;关键的概念是“文件类型指针”&#xff0c;简称“文件指针”取名为FILE。 例如&#xff0c; VS2013编译环境提供的 stdio. h头文件中有以下的文件类型申明&#xff1a; struct _ iobuf { char *_ ptr; int _…

【YOLO5 项目实战】(6)YOLO5+StrongSORT 目标追踪

欢迎关注『youcans动手学模型』系列 本专栏内容和资源同步到 GitHub/youcans 【YOLO5 项目实战】&#xff08;1&#xff09;YOLO5 环境配置与检测 【YOLO5 项目实战】&#xff08;2&#xff09;使用自己的数据集训练目标检测模型 【YOLO5 项目实战】&#xff08;6&#xff09;Y…

数据库机器上停service360safe

发现有个数据库的负载较高&#xff0c;发现有360safe&#xff0c;就准备停了该服务再观察 [rootdb1 ~]# ps -ef |grep 360 root 970 1 0 15:12 ? 00:00:10 /opt/360safe/360entclient root 976 970 5 15:12 ? 00:18:42 /opt/360…

Linux之RabbitMQ集群部署

RabbitMQ 消息中间件 1、消息中间件 消息(message)&#xff1a; 指在服务之间传送的数据。可以是简单的文本消息&#xff0c;也可以是包含复杂的嵌入对象的消息 消息队列(message queue): 指用来存放消息的队列&#xff0c;一般采用先进先出的队列方式&#xff0c;即最先进入的…

关于springboot的异常处理以及源码分析(一)

一、什么是异常处理 1、文档定义 首先我们先来看springboot官方对于异常处理的定义。springboot异常处理 在文档的描述中&#xff0c;我们首先可以看到的一个介绍如下&#xff1a; By default, Spring Boot provides an /error mapping that handles all errors in a sensib…

优思学院|如何在30分钟内评审一家供应商?SQE必需知道的11点

在供应商评审中&#xff0c;特别是时间有限的情况下&#xff0c;SQE&#xff08;供应商质量工程师&#xff09;需要通过高效的观察和分析来快速评估供应商的能力。在《哈佛商业评论》中&#xff0c;R. Eugene Goodson 的一篇“Read a Plant—Fast”文章正好提供了一个极为实用的…

python实现指数平滑法进行时间序列预测

python实现指数平滑法进行时间序列预测 一、指数平滑法定义 1、指数平滑法是一种常用的时间序列预测算法,有一次、二次和三次平滑,通过加权系数来调整历史数据权重; 2、主要思想是:预测值是以前观测值的加权和,且对不同的数据给予不同的权数,新数据给予较大的权数,旧数…

基于x86 平台opencv的图像采集和seetaface6的人脸识别功能

目录 一、概述二、环境要求2.1 硬件环境2.2 软件环境三、开发流程3.1 编写测试3.2 配置资源文件3.2 验证功能一、概述 本文档是针对x86 平台opencv的图像采集和seetaface6的人脸识别功能,opencv通过读取本地图像,将采集的本地图像送给seetaface6的人脸识别模块从而实现人脸识…

FreeRTOS学习笔记(四)——延时函数,列表,软件定时器,低功耗模式,内存管理

FreeRTOS学习笔记&#xff08;四&#xff09;——延时函数&#xff0c;列表&#xff0c;软件定时器&#xff0c;低功耗模式&#xff0c;内存管理 文章目录 FreeRTOS学习笔记&#xff08;四&#xff09;——延时函数&#xff0c;列表&#xff0c;软件定时器&#xff0c;低功耗模…

尚硅谷Java面试题第四季-MySQL面试题

1.如何建立复合索引&#xff0c;一般加在哪些字段&#xff1f;建索引的理论依据或者经验 2.Innodb的行锁到底锁了什么? 结论&#xff1a; InnoDB的行锁&#xff0c;是通过锁住索引来实现的&#xff0c;如果加锁查询的时候没有使用到索引&#xff0c;会将整个聚簇索引都锁住&am…

【python报错已解决】`Traceback (most recent call last)`

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏: 《C干货基地》《粉丝福利》 ⛺️生活的理想&#xff0c;就是为了理想的生活! 引言 你是否在运行Python程序时遇到了Traceback (most recent call last)的错误&#xff1f;这个错误通常表明你的程序中有一个…

为什么大负载通电瞬间电压跌落,前级MOS开关如何设计

文章目录 1.1 前言1.2 简单典型电路1.3 分析优劣性1.4 优化后的开关电路1.5 具体原理分析1.6 实验验证效果1.7 适用应用场景 1.1 前言 电子产品设计电路某负载需要断电省下或异常下电复位&#xff0c;这时候会考虑在负载供电前端增加一个开关对其进行供电做控制&#xff0c;典…

超声波模块HC_SR04(hal库)

超声波模块HC_SR04 原理 1.触发信号&#xff1a;拉高至少10us的高电平 2.回响信号处理&#xff1a;计算高电平时长 3.计算距离&#xff1a;时间*速度&#xff08;声速&#xff09;/2&#xff08;注意单位问题&#xff09; 代码实现 方法1.下拉输入 配置 用于延时微秒us和…

第四届机械制造与智能控制国际学术会议(ICMMIC 2024)

目录 重要信息 大会介绍 主办单位 协办单位 大会主席 主讲嘉宾 征稿主题 会议日程 参会方式 重要信息 会议时间&#xff1a;2024年9月27-29日 大会官网&#xff1a;www.icmmic.com&#xff08;点击查看&#xff0c;大会信息&#xff0c;报名&#xff0c;投稿&#x…