秒懂Linux之缓冲区

news2024/12/30 0:54:10

fe594ea5bf754ddbb223a54d8fb1e7bc.gif

目录

一.何为缓冲区

二. 缓冲区在哪

三. 模拟编码


一.何为缓冲区

缓冲区说白了就是一块内存区域,目的是为了提高使用者的效率以及减少C语言接口的使用频率~

下面我们用一则小故事来类比出缓冲区的功能~

张三为了给朋友李四庆祝生日快乐准备了份生日礼物~张三难道会横跨如此远的距离专门跑到新疆亲手给李四礼物吗?——这是不可能的~

这时候张三只需要下楼到顺丰站寄礼物就完事了,剩下只需要让顺丰帮张三把礼物送到位于新疆的顺丰区,然后张三再去取快递就可以了~

顺丰站就相当于我们的缓冲区,帮助我们存储数据再传递数据~而缓冲区呢有一个特点,它可以聚集数据一次性拷贝过去,提高整体的效率~

就像我们的生日礼物顺丰不可能单独一件一件发出去,肯定要等到一定量再一起发过去,这样效率才更高~

回到我们之前学习文件的时候,在描述文件的结构体中我们指出了里面包含了缓冲区

我们正常理解可能是这样的~C接口获取到内容数据后就会去调用系统调用接口,然后系统调用就会根据fb找到对应的文件结构体进而把数据写入到内核中的缓冲区~最后再由OS管理决定什么时候才刷新~

但这么频繁使用系统调用接口是有成本的,每获取一次数据都被进行一次C接口调用,系统接口调用会很麻烦~

这时候C接口也出现了缓冲区,而C接口函数也不会再通过频繁调用系统接口来传递数据,反而是把内容数据传递到缓冲区中,等到缓冲区满足一定的规则后再聚集数据一次性拷贝到系统接口中去,提高整体的效率~ 

在这个应用层中的缓冲区本质上就是用空间来换取时间效率~即减少了C接口的使用频率(去调用系统接口),也提高了使用者的效率(聚集拷贝数据)~

二. 缓冲区在哪

缓冲区就在名为FILE的结构体中,里面不仅仅封装了fd,还有缓冲区,并且是每一个文件都会有专属的缓冲区~

接下来我们就来证明一下~

#include <stdio.h>
#include <unistd.h>
#include <string.h>

int main()
{
    // 使用system call
    const char *s1 = "hello write\n";
    write(1, s1, strlen(s1));

    // 使用C语言接口
    const char *s2 = "hello fprintf\n";
    fprintf(stdout, "%s", s2);

    const char *s3 = "hello fwrite\n";
    fwrite(s3, strlen(s3), 1, stdout);


    fork();
    return 0;
}

目前我们可以知道子进程肯定是不会去执行父进程代码的,因为fork在打印代码之后~

而由于父进程第一个是用系统调用接口,所以会直接走内核的缓冲区,OS会直接把该数据内容刷新出去写入磁盘中对应的文件~

而后面两个内容数据由于是C接口传递的应用层缓冲区,所以要遵守规则等待写满才可以刷新出去~

但是进程终究是要退出的,最后是通过进程退出来直接刷新出缓冲区~但恰恰是这里出了问题~

所以迷惑的点并不是少打印了一个write,而是多打印了后面两句语句~

三. 模拟编码

下面我们来模拟一下C标准库中的方法~

//filetest.c
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include "mystdio.h"

const char* filename = "./log.txt";
int main()
{
   myFILE* fp = my_fopen(filename,"w");
   if(fp==NULL) return 1;

   const char* str = "hello\n";
   my_fwrite(fp,str,strlen(str));

   my_fclose(fp);


    
    return 0;
}
//mystdio.c
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>
#include "mystdio.h"

//用我们模拟的接口去调用系统调用~
myFILE *my_fopen(const char *pathname, const char *mode)
{
    //在调用系统接口open前我们需要先获取参数flag
    int flag = 0;
    if(strcmp(mode, "r") == 0)
    {
        flag |= O_RDONLY;
    }
    else if(strcmp(mode, "w") == 0)
    {
        flag |= (O_CREAT|O_WRONLY|O_TRUNC);
    }
    else if(strcmp(mode, "a") == 0)
    {
        flag |= (O_CREAT|O_WRONLY|O_APPEND);
    }
    else
    {
        return NULL;
    }

    int fd = 0;
    if(flag & O_WRONLY)
    {
        umask(0);
        fd = open(pathname, flag, 0666);
    }
    else
    {
        fd = open(pathname, flag);
    }
    if(fd < 0) return NULL;
    //my_fopen会得到一个myFILE*的指针
    //所以我们在这里给该文件创建一个结构体
    myFILE *fp = (myFILE*)malloc(sizeof(myFILE));
    if(fp == NULL) return NULL;
    fp->fileno = fd;
    return fp;
}


int my_fwrite(myFILE *fp, const char *s, int size)
{
   return write(fp->fileno,s,size);
}

void my_fclose(myFILE *fp)
{
    close(fp->fileno);
    free(fp);
}

 

//mystdio.h
#pragma once

#include <stdio.h>

//#define SIZE 4096

typedef struct _myFILE
{
  
    int fileno;
}myFILE;


myFILE *my_fopen(const char *pathname, const char *mode);
int my_fwrite(myFILE *fp, const char *s, int size);
void my_fclose(myFILE *fp);

这样我们就完成最基本的模拟了~可是这样会频繁去调用我们的系统接口~有没有减少该成本的办法呢?

当我们写入数据到文件调用my_fwrite的时候先不要着急调用系统接口,而是把数据拷贝到我们的缓冲区中~然后再等到缓冲区积累一定数据再统一拷贝给系统接口就可以很好提高效率了~

//mystdio.c
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>
#include "mystdio.h"

//用我们模拟的接口去调用系统调用~
myFILE *my_fopen(const char *pathname, const char *mode)
{
    //在调用系统接口open前我们需要先获取参数flag
    int flag = 0;
    if(strcmp(mode, "r") == 0)
    {
        flag |= O_RDONLY;
    }
    else if(strcmp(mode, "w") == 0)
    {
        flag |= (O_CREAT|O_WRONLY|O_TRUNC);
    }
    else if(strcmp(mode, "a") == 0)
    {
        flag |= (O_CREAT|O_WRONLY|O_APPEND);
    }
    else
    {
        return NULL;
    }

    int fd = 0;
    if(flag & O_WRONLY)
    {
        umask(0);
        fd = open(pathname, flag, 0666);
    }
    else
    {
        fd = open(pathname, flag);
    }
    if(fd < 0) return NULL;
    //my_fopen会得到一个myFILE*的指针
    //所以我们在这里给该文件创建一个结构体
    myFILE *fp = (myFILE*)malloc(sizeof(myFILE));
    if(fp == NULL) return NULL;
    fp->fileno = fd;
    fp->cap = SIZE;
    fp->pos = 0;
    //这里我们默认设置为行刷新
    fp->flush_mode = LINE_FLUSH;
    return fp;
}


const char *toString(int flag)
{
    if(flag & NONE_FLUSH) return "None";
    else if(flag & LINE_FLUSH) return "Line";
    else if(flag & FULL_FLUSH) return "FULL";
    return "Unknow";
}

//查看结构体基本属性
void DebugPrint(myFILE *fp)
{
    printf("outbufer: %s\n", fp->outbuffer);
    printf("fd: %d\n", fp->fileno);
    printf("pos: %d\n", fp->pos);
    printf("cap: %d\n", fp->cap);
    printf("flush_mode: %s\n", toString(fp->flush_mode));
}

void my_fflush(myFILE*fp)
{
  if(fp->pos==0)return;
  //把缓冲区的内容交给系统接口
  write(fp->fileno,fp->outbuffer,fp->pos);
  fp->pos = 0;
}

int my_fwrite(myFILE *fp, const char *s, int size)
{
    //写入缓冲区中
    memcpy(fp->outbuffer+fp->pos,s,size);
    fp->pos+=size;
    //判断是否需要刷新
    if((fp->flush_mode&LINE_FLUSH)&&fp->outbuffer[fp->pos-1]=='\n')
    {
      my_fflush(fp);
    }
    if((fp->flush_mode&FULL_FLUSH)&&fp->outbuffer[fp->pos-1]=='\n')
    {
      my_fflush(fp);
    }
    return size;
}

void my_fclose(myFILE *fp)
{
    //进程关闭前自动刷新缓冲区
    my_fflush(fp);
    close(fp->fileno);
    free(fp);
}

 

//mystdio.h
#pragma once

#include <stdio.h>

#define SIZE 4096
#define NONE_FLUSH (1<<1)
#define LINE_FLUSH (1<<2)
#define FULL_FLUSH (1<<3)

typedef struct _myFILE
{
    //定义输入缓冲区
    char inbuffer[SIZE];
    //定义输出缓冲区
    char outbuffer[SIZE];
    //当前缓冲区写入位置
    int pos;
    //缓冲区当前容量大小
    int cap;
    //缓冲区刷新模式
    int flush_mode;
    int fileno;
}myFILE;
 

myFILE *my_fopen(const char *pathname, const char *mode);
int my_fwrite(myFILE *fp, const char *s, int size);
void my_fclose(myFILE *fp);
void my_fflush(myFILE *fp);
void DebugPrint(myFILE *fp);
//filetest.c
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include "mystdio.h"

const char* filename = "./log.txt";

int main()
{
    myFILE *fp = my_fopen(filename, "w");
    if(fp == NULL) return 1;

    int cnt = 5;
    char buffer[64];
    while(cnt)
    {
        //每一次把字符串写入buffer中
        snprintf(buffer, sizeof(buffer), "helloworld,hellobit,%d  ", cnt--);
        //获取写入的数据
        my_fwrite(fp, buffer, strlen(buffer));
        //打印属性,查看每一次循环的情况
        DebugPrint(fp);
        sleep(2);
    }
    //创建子进程,看是否会有拷贝两次的问题
    fork();
    //强制刷新缓冲区
    my_fclose(fp);
    return 0;
}

最终我们发现在模式为行刷新但没有\n的情况下我们在进程离开后成功让缓冲区刷新,并且符合父子进程之间的写时拷贝,让刷新出来的内容重复了两次~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2061692.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

开源原型设计工具Penpot

Penpot是一个现代化、开源的协同设计平台&#xff0c;专为跨职能团队打造&#xff0c;提供了强大的在线设计和原型制作功能。 以下是对Penpot的详细介绍&#xff1a; 一、平台特点 开源与免费&#xff1a;Penpot是一个完全免费且开放源代码的项目&#xff0c;允许社区贡献和定…

Redis补充

Redis事务 Redis事务的概念 Redis 事务的本质是一组命令的集合。事务支持一次执行多个命令&#xff0c;一个事务中所有命令都会被序列化。在事务执行过程&#xff0c;会按照顺序串行化执行队列中的命令&#xff0c;其他客户端提交的命令请求不会插入到事务执行命令序列中。 …

JAVA多线程等待唤醒机制

为什么要处理线程间通信&#xff1a; 当我们需要多个线程来共同完成一件任务&#xff0c;并且我们希望他们有规律的执行&#xff0c;那么多线程之间需要一些通信机制&#xff0c;可以协调它们的工作&#xff0c;以此实现多线程共同操作一份数据。 比如&#xff1a;线程A用来生…

Java | Leetcode Java题解之第357题统计各位数字都不同的数字个数

题目&#xff1a; 题解&#xff1a; class Solution {public int countNumbersWithUniqueDigits(int n) {if (n 0) {return 1;}if (n 1) {return 10;}int res 10, cur 9;for (int i 0; i < n - 1; i) {cur * 9 - i;res cur;}return res;} }

4-1-5 步进电机原理2(电机专项教程)

4-1-5 步进电机原理2&#xff08;电机专项教程&#xff09; 4-1-5 步进电机原理2永磁式步进电机反应式步进电机混合式步进电机混合式步进电机基本原理 4-1-5 步进电机原理2 新的步进电机分类 永磁式步进电机 目前学习的转子都是永磁铁 反应式步进电机 软磁材料易受到周围磁场…

阿里云魏子珺:阿里云Elasticsearch AI 搜索实践

作者&#xff1a;阿里云魏子珺 【AI搜索 TechDay】是 Elastic 和阿里云联合主办的 AI 技术 Meetup 系列&#xff0c;聚焦企业级 AI 搜索应用和开发者动手实践&#xff0c;旨在帮助开发者在大模型浪潮下升级 AI 搜索&#xff0c;助力业务增长。 阿里云 Elasticsearch 的 AI 搜索…

Nginx笔记(高级)

扩容 通过扩容提升整体吞吐量 单机垂直扩容&#xff1a;硬件资源增加 云服务资源增加 整机&#xff1a;IBM、浪潮、DELL、HP等CPU/主板&#xff1a;更新到主流网卡&#xff1a;10G/40G网卡磁盘&#xff1a;SAS(SCSI) HDD&#xff08;机械&#xff09;、HHD&#xff08;混合&…

OpenCV几何图像变换(5)旋转和缩放计算函数getRotationMatrix2D()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 计算二维旋转的仿射矩阵。 该函数计算以下矩阵&#xff1a; [ α β ( 1 − α ) ⋅ center.x − β ⋅ center.y − β α β ⋅ center.x ( …

Linux 中断处理与内核线程化——以触摸屏中断为例

文章目录 1 什么是中断&#xff1f;2 传统的中断处理模型3 内核线程与用户进程4 中断线程化的理念5 devm_request_threaded_irq 与 request_irq 的比较6 触摸屏驱动中的中断线程化参考链接封面 本文探讨了 Linux 中断处理的传统模型与中断线程化的理念&#xff0c;以及在触摸屏…

【Python】计算直角三角形的 ∠MBC

有一个直角三角形 ABC&#xff0c;其中角 B 是直角&#xff08;90&#xff09;。点 M 是斜边 AC 的中点。我们需要根据边 AB 和 BC 的长度来计算角 ∠MBC。 在直角三角形中&#xff0c;如果一个角是直角&#xff0c;那么另外两个角的和是90。由于 M 是斜边的中点&#xff0c;根…

turtle画图知识

Turtle库是Python编程语言中的一个库&#xff0c;用于创建各种类型的图形&#xff0c;包括简单圆形、线条、路径和图片。它支持多种图形类型&#xff0c;并且可以绘制出各种复杂的形状。 以下是一些基本的使用方法&#xff1a; 1. 创建一个新的Turtle对象&#xff1a; pytho…

hyperf 协程作用和相关的方法

什么是协程 协程是一种轻量级的线程&#xff0c;由用户代码来调度和管理&#xff0c;而不是由操作系统内核来进行调度&#xff0c;也就是在用户态进行 判断当前是否处于协程环境内 在一些情况下我们希望判断一些当前是否运行于协程环境内&#xff0c; 对于一些兼容协程环境与…

RK3568平台(PWM篇)PWM驱动

一.PWM基础知识 PWM 全称为 Pulse Width Modulation&#xff0c;翻译成中文为脉冲宽度调制&#xff0c;它是一种数字信号控 制模拟电路的技术&#xff0c;可以通过改变高/低电平的占空比来控制平均电压或功率,从而达到对模拟 量的控制目的。 周期(T)&#xff1a;指一个完整的…

Vue条件判断:v-if、v-else、v-else-if、v-show 指令

在程序设计中&#xff0c;条件判断是必不可少的技术。在视图中&#xff0c;经常需要通过条件判断来控制 DOM 的显示状态。Vue.js 提供了相应的指令用于实现条件判断&#xff0c;包括&#xff1a;v-if、v-else、v-else-if、v-show 指令。 1、v-if 指令 v-if 指令可以根据表达式…

机器学习 之 线性回归算法

目录 线性回归&#xff1a;理解与应用 什么是线性回归&#xff1f; 一元线性回归 正态分布的重要性 多元线性回归 实例讲解 数据准备 数据分析 构建模型 训练模型 验证模型 应用模型 代码实现 线性回归&#xff1a;理解与应用 线性回归是一种广泛使用的统计方法&…

企业高性能web服务器,原理及实例

一、Web 服务基础介绍 正常情况下的单次web服务访问流程&#xff1a; 1.1 Web 服务介绍 1993年3月2日&#xff0c;中国科学院高能物理研究所租用AT&T公司的国际卫星信道建立的接入美国SLAC国家实 验室的64K专线正式开通&#xff0c;成为我国连入Internet的第一根专线。 1…

Mycat分片-垂直拆分

目录 场景 配置 测试 全局表配置 续接上篇&#xff1a;MySQ分库分表与MyCat安装配置-CSDN博客 续接下篇&#xff1a;Mycat分片-水平拆分-CSDN博客 场景 在业务系统中, 涉及以下表结构 ,但是由于用户与订单每天都会产生大量的数据, 单台服务器的数据 存储及处理能力是有限…

0x01 GlassFish 任意文件读取漏洞复现

参考文章&#xff1a; 应用服务器glassfish任意文件读取漏洞 - SecPulse.COM | 安全脉搏 fofa 搜索使用该服务器的网站 网络空间测绘&#xff0c;网络空间安全搜索引擎&#xff0c;网络空间搜索引擎&#xff0c;安全态势感知 - FOFA网络空间测绘系统 "glassfish"&…

VUE3-nest前后端部署教程-----4.服务器linux中部署Node.js环境

一.安装分布式版本管理系统Git (Alibaba Cloud Linux 3/2、CentOS 7.x) sudo yum install git -y 二.使用Git将NVM的源码克隆到本地的~/.nvm目录下&#xff0c;并检查最新版本。 git clone https://gitee.com/mirrors/nvm.git ~/.nvm && cd ~/.nvm && gi…

仿Muduo库实现高并发服务器——Server.hpp框架的简单描述

EventLoop模块在本项目中的简单使用&#xff1a; 下面这张图 是channel模块&#xff0c;poller模块&#xff0c;TimerWheel模块&#xff0c;EventLoop模块&#xff0c;LoopThreadPool模块进行组合。便于大家对这个项目的理解&#xff0c;因为代码看起来挺复杂的。 下面这个图&…