【Redis】Redis典型应用-缓存(cache)

news2024/11/15 19:28:38

目录

什么是缓存

使用Redis作为缓存

缓存的更新策略

缓存预热(cache preheating)

缓存穿透(cache penetration)

缓存雪崩(cache avalanche)

缓存击穿(cache breakdown)


什么是缓存

缓存 (cache) 是计算机中的⼀个经典的概念. 在很多场景中都会涉及到.
核⼼思路就是把⼀些常⽤的数据放到触⼿可及(访问速度更快)的地⽅, ⽅便随时读取.

举个例⼦:
⽐如我需要去⾼铁站坐⾼铁. 我们知道坐⾼铁是需要反复刷⾝份证的 (进⼊⾼铁站, 检票, 上⻋,
乘⻋过程中, 出站....).
正常来说, 我的⾝份证是放在⽪箱⾥的(⽪箱的存储空间⼤, ⾜够能装). 但是每次刷⾝份证都需
要开⼀次⽪箱找⾝份证, 就⾮常不⽅便.
因此我就可以把⾝份证先放到⾐服⼝袋⾥. ⼝袋虽然空间⼩, 但是访问速度⽐⽪箱快很多.
这样的话每次刷⾝份证我只需要从⼝袋⾥掏⾝份证就⾏了, 就不必开⽪箱了.
此时 "⼝袋" 就是 "⽪箱" 的缓存. 使⽤缓存能够⼤⼤提⾼访问效率.

这⾥所说的 "触⼿可及" 是个相对的概念.
我们知道, 对于硬件的访问速度来说, 通常情况下:
CPU 寄存器 > 内存 > 硬盘 > ⽹络
那么硬盘相对于⽹络是 "触⼿可及的", 就可以使⽤硬盘作为⽹络的缓存.
内存相对于硬盘是 "触⼿可及的", 就可以使⽤内存作为硬盘的缓存.
CPU 寄存器相对于内存是 "触⼿可及的", 就可以使⽤ CPU 寄存器作为内存的缓存.

对于计算机硬件来说, 往往访问速度越快的设备, 成本越⾼, 存储空间越⼩.
缓存是更快, 但是空间上往往是不⾜的. 因此⼤部分的时候, 缓存只放⼀些 热点数据 (访问频繁的数据),就⾮常有⽤了.

关于 "⼆⼋定律"
20% 的热点数据, 能够应对 80% 的访问场景.
因此只需要把这少量的热点数据缓存起来, 就可以应对⼤多数场景, 从⽽在整体上有明显的性
能提升.

使用Redis作为缓存

在⼀个⽹站中, 我们经常会使⽤关系型数据库 (⽐如 MySQL) 来存储数据.
关系型数据库虽然功能强⼤, 但是有⼀个很⼤的缺陷, 就是性能不⾼. (换⽽⾔之, 进⾏⼀次查询操作消耗的系统资源较多).

为什么说关系数据库性能不高?

1. 数据库把数据存储在硬盘上, 硬盘的 IO 速度并不快. 尤其是随机访问
2. 如果查询不能命中索引, 就需要进⾏表的遍历, 这就会⼤⼤增加硬盘 IO 次数
3. 关系型数据库对于 SQL 的执⾏会做⼀系列的解析, 校验, 优化⼯作
4. 如果是⼀些复杂查询, ⽐如联合查询, 需要进⾏笛卡尔积操作, 效率更是降低很多

因此, 如果访问数据库的并发量⽐较⾼, 对于数据库的压⼒是很⼤的, 很容易就会使数据库服务器宕机

为什么并发量⾼了就会宕机?
服务器每次处理⼀个请求, 都是需要消耗⼀定的硬件资源的. 所谓的硬件资源包括不限于 CPU,
内存, 硬盘, ⽹络带宽......

⼀个服务器的硬件资源本⾝是有限的. ⼀个请求消耗⼀份资源, 请求多了, ⾃然把资源就耗尽
了. 后续的请求没有资源可⽤, ⾃然就⽆法正确处理. 更严重的还会导致服务器程序的代码出现
崩溃

如何让数据库能够承担更⼤的并发量呢? 核⼼思路主要是两个:

开源: 引⼊更多的机器, 部署更多的数据库实例, 构成数据库集群. (主从复制, 分库分表等...)

节流: 引⼊缓存, 使⽤其他的⽅式保存经常访问的热点数据, 从⽽降低直接访问数据库的请求数量

Redis 就是⼀个⽤来作为数据库缓存的常⻅⽅案.

Redis 访问速度⽐ MySQL 快很多. 或者说处理同⼀个访问请求, Redis 消耗的系统资源⽐
MySQL 少很多. 因此 Redis 能⽀持的并发量更⼤

Redis 数据在内存中, 访问内存⽐硬盘快很多
Redis 只是⽀持简单的 key-value 存储, 不涉及复杂查询的那么多限制规则

客⼾端访问业务服务器, 发起查询请求.
业务服务器先查询 Redis, 看想要的数据是否在 Redis 中存在.
        如果已经在 Redis 中存在了, 就直接返回. 此时不必访问 MySQL 了.
        如果在 Redis 中不存在, 再查询 MySQL. 

按照上述讨论的 "⼆⼋定律" , 只需要在 Redis 中放 20% 的热点数据, 就可以使 80% 的请求不再真正查询数据库了

缓存的更新策略

定期生成

每隔⼀定的周期(⽐如⼀天/⼀周/⼀个⽉), 对于访问的数据频次进⾏统计. 挑选出访问频次最⾼的前 N%的数据.

 以搜索引擎为例.
⽤⼾在搜索引擎中会输⼊⼀个 "查询词", 有些词是属于⾼频的, ⼤家都爱搜(鲜花, 蛋糕, 同城交
友, 不孕不育...). 有些词就属于低频的, ⼤家很少搜.
搜索引擎的服务器会把哪个⽤⼾什么时间搜了啥词, 都通过⽇志的⽅式记录的明明⽩⽩. 然后
每隔⼀段时间对这期间的搜索结果进⾏统计 (⽇志的数量可能⾮常巨⼤, 这个统计的过程可能
需要使⽤ hadoop 或者 spark 等⽅式完成). 从⽽就可以得到 "⾼频词表" .

这种做法实时性较低. 对于⼀些突然情况应对的并不好.
⽐如春节期间, "春晚" 这样的词就会成为⾮常⾼频的词. ⽽平时则很少会有⼈搜索 "春晚".

实时生成

先给缓存设定容量上限(可以通过 Redis 配置⽂件的 maxmemory 参数设定).
接下来把⽤⼾每次查询:
如果在 Redis 查到了, 就直接返回.
如果 Redis 中不存在, 就从数据库查, 把查到的结果同时也写⼊ Redis.
如果缓存已经满了(达到上限), 就触发缓存淘汰策略, 把⼀些 "相对不那么热⻔" 的数据淘汰掉.
按照上述过程, 持续⼀段时间之后 Redis 内部的数据⾃然就是 "热⻔数据" 了.

通⽤的淘汰策略主要有以下⼏种:

FIFO (First In First Out) 先进先出
把缓存中存在时间最久的 (也就是先来的数据) 淘汰掉.

LRU (Least Recently Used) 淘汰最久未使⽤的
记录每个 key 的最近访问时间. 把最近访问时间最⽼的 key 淘汰掉.

LFU (Least Frequently Used) 淘汰访问次数最少的
记录每个 key 最近⼀段时间的访问次数. 把访问次数最少的淘汰掉.

Random 随机淘汰
从所有的 key 中抽取幸运⼉被随机淘汰掉.

Redis 内置的淘汰策略如下:

volatile-lru 当内存不⾜以容纳新写⼊数据时,从设置了过期时间的key中使⽤LRU(最近最
少使⽤)算法进⾏淘汰

allkeys-lru 当内存不⾜以容纳新写⼊数据时,从所有key中使⽤LRU(最近最少使⽤)算法进
⾏淘汰.

volatile-lfu 4.0版本新增,当内存不⾜以容纳新写⼊数据时,在过期的key中,使⽤LFU算法
进⾏删除key.

volatile-random 当内存不⾜以容纳新写⼊数据时,从设置了过期时间的key中,随机淘汰数
据.

allkeys-random 当内存不⾜以容纳新写⼊数据时,从所有key中随机淘汰数据.

volatile-ttl 在设置了过期时间的key中,根据过期时间进⾏淘汰,越早过期的优先被淘汰.
(相当于 FIFO, 只不过是局限于过期的 key)

noeviction 默认策略,当内存不⾜以容纳新写⼊数据时,新写⼊操作会报错.

整体来说 Redis 提供的策略和我们上述介绍的通⽤策略是基本⼀致的. 只不过 Redis 这⾥会针对 "过期key" 和 "全部 key" 做分别处理.

缓存预热(cache preheating)

使⽤ Redis 作为 MySQL 的缓存的时候, 当 Redis 刚刚启动, 或者 Redis ⼤批 key 失效之后, 此时由于Redis ⾃⾝相当于是空着的, 没啥缓存数据, 那么 MySQL 就可能直接被访问到, 从⽽造成较⼤的压⼒.因此就需要提前把热点数据准备好, 直接写⼊到 Redis 中. 使 Redis 可以尽快为 MySQL 撑起保护伞

热点数据可以基于之前介绍的统计的⽅式⽣成即可. 这份热点数据不⼀定⾮得那么 "准确", 只要能帮助MySQL 抵挡⼤部分请求即可. 随着程序运⾏的推移, 缓存的热点数据会逐渐⾃动调整, 来更适应当前情况

缓存穿透(cache penetration)

什么是缓存穿透

访问的 key 在 Redis 和 数据库中都不存在. 此时这样的 key 不会被放到缓存上, 后续如果仍然在访问该key, 依然会访问到数据库.这就会导致数据库承担的请求太多, 压⼒很⼤.这种情况称为 缓存穿透.

产生原因

原因可能有⼏种:

业务设计不合理. ⽐如缺少必要的参数校验环节, 导致⾮法的 key 也被进⾏查询了.

开发/运维误操作. 不⼩⼼把部分数据从数据库上误删了.

⿊客恶意攻击.

如何解决:

针对要查询的参数进⾏严格的合法性校验. ⽐如要查询的 key 是⽤⼾的⼿机号, 那么就需要校验当前key 是否满⾜⼀个合法的⼿机号的格式.

针对数据库上也不存在的 key , 也存储到 Redis 中, ⽐如 value 就随便设成⼀个 "". 避免后续频繁访问数据库.

使⽤布隆过滤器先判定 key 是否存在, 再真正查询.

缓存雪崩(cache avalanche)

什么是缓存雪崩

短时间内⼤量的 key 在缓存上失效, 导致数据库压⼒骤增, 甚⾄直接宕机.

本来 Redis 是 MySQL 的⼀个护盾, 帮 MySQL 抵挡了很多外部的压⼒. ⼀旦护盾突然失效了,MySQL⾃⾝承担的压⼒骤增, 就可能直接崩

产生原因

⼤规模 key 失效, 可能性主要有两种:

Redis 挂了.

Redis 上的⼤量的 key 同时过期.这种可能是短时间内在 Redis 上缓存了⼤量的 key, 并且设定了相同的过期时间.

如何解决:

部署⾼可⽤的 Redis 集群, 并且完善监控报警体系.

不给 key 设置过期时间 或者 设置过期时间的时候添加随机时间因⼦.

缓存击穿(cache breakdown)

什么是缓存击穿

相当于缓存雪崩的特殊情况. 针对热点 key , 突然过期了, 导致⼤量的请求直接访问到数据库上, 甚⾄引起数据库宕机.

如何解决:

基于统计的⽅式发现热点 key, 并设置永不过期.
进⾏必要的服务降级. 例如访问数据库的时候使⽤分布式锁, 限制同时请求数据库的并发数.


今天对Redis作为缓存(cache)的分享到这就结束了,希望大家读完后有很大的收获,也可以在评论区点评文章中的内容和分享自己的看法;个人主页还有很多精彩的内容。您三连的支持就是我前进的动力,感谢大家的支持!!! 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2055225.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

最小路径和[中等]

优质博文:IT-BLOG-CN 一、题目 给定一个包含非负整数的m x n网格grid,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。 说明:每次只能向下或者向右移动一步。 示例 1: 输入:grid [[…

四十一、【人工智能】【机器学习】- Bayesian Logistic Regression算法模型

系列文章目录 第一章 【机器学习】初识机器学习 第二章 【机器学习】【监督学习】- 逻辑回归算法 (Logistic Regression) 第三章 【机器学习】【监督学习】- 支持向量机 (SVM) 第四章【机器学习】【监督学习】- K-近邻算法 (K-NN) 第五章【机器学习】【监督学习】- 决策树…

分布式缓存———数据一致性问题

分布式基础理论 CAP理论 与 BASE理论-CSDN博客 分布式系统会的三座大山:NPC。 N:Network Delay,网络延迟P:Process Pause,进程暂停(GC)C:Clock Drift,时钟漂移 在当前…

汇昌联信科技做拼多多电商有哪些策略?

在当今竞争激烈的电商平台上,汇昌联信科技以其独到的策略成功立足拼多多。他们不仅凭借对市场的深刻理解,还通过一系列创新举措,实现了品牌的快速成长和市场份额的不断扩大。接下来,我们将深入探讨汇昌联信科技在拼多多平台上所采…

基于Python的火车票售票系统/基于django的火车购票系统

摘 要 随着信息技术和网络技术的飞速发展,人类已进入全新信息化时代,传统管理技术已无法高效,便捷地管理信息。为了迎合时代需求,优化管理效率,各种各样的管理系统应运而生,各行各业相继进入信息管理时代&…

三节点 DMHS 级联同步搭建

一、环境配置 完成三节点数据库部署并初始化,配置参数如下: 节点 192.168.2.132 192.168.2.133 192.168.2.130 数据库版本 DM8 DM8 DM8 实例名 DM1 DM2 DM3 端口号 5236 5236 5236 数据文件路径 /home/dmdba/dmdata /home/dmdba/dmd…

【Hot100】LeetCode—19. 删除链表的倒数第 N 个结点

目录 1- 思路双指针 2- 实现⭐19. 删除链表的倒数第 N 个结点——题解思路 3- ACM 实现 原题连接:19. 删除链表的倒数第 N 个结点 1- 思路 双指针 定义 dummyHead 处理头结点情况slow 指针:初始化为 dummyHead 定位到被移除元素的前一个fast 指针&…

海外短剧系统开源代码+快速搭建部署指南

前言: 海外短剧系统是一个专门为海外观众设计和运营的内容平台。这个系统不仅包含了丰富的短剧资源,还提供了全面的技术支持和运营服务,以确保短剧内容能够顺利地面向全球观众传播。 一、市场背景 由于国内短剧市场的急剧增长,…

x64dbg: 用于Windows的开源二进制调试器

x64dbg是Windows的开源二进制调试器,专为恶意软件分析和可执行文件的逆向工程而设计,无需访问源代码。 它提供了广泛的功能和插件系统,允许您定制和扩展其功能以满足您的需求。 人们喜欢x64dbg的原因可能是它有一个UI,可以轻松地…

开源服务器运维工具1Panel

1Panel是杭州飞致云信息科技有限公司推出的一款现代化、开源的Linux服务器运维管理面板。 以下是对1Panel的详细介绍: 一、基本信息 产品名称:1Panel所属公司:杭州飞致云信息科技有限公司编写语言:Golang上线时间:20…

团队管理的五个基本原则

一个成功的团队不仅能够迅速响应市场变化,还能在激烈的竞争中保持持续的创新力和竞争力。为了实现这一目标,团队管理必须遵循以下五个基本原则: 1、信任为先 “用人不疑,疑人不用”是团队管理的首要原则。信任是团队合作的基石。…

海外最新趋势解读!美国IMS2024揭示了哪些连接器新技术?

2024年6月的IEEE MTT-S国际微波研讨会在华盛顿特区盛大开启,集结了全球射频行业的顶尖企业,展示了集成电路、传感器、连接器、电缆、光学和波导等多元化产品和技术。 作者 | David Shaff 编译 | 深圳市连接器行业协会 李亦平 在今年IMS2024活动中所展示…

C# x Unity面向对象补全计划 设计模式 之 实现一个简单的有限状态机

一个简单的有限状态机可以有如下内容 1.状态基类(定义基本状态的方法,如进入(Enter)、执行(Execute)和退出(Exit),同时可以在此声明需要被管理的对象) 2.具体…

电动汽车是否将成为银的最大需求端?

近年来,工业对银的需求一直在激增。主要是由于太阳能面板制造商对银的大量需求,预计2023年的需求量将比前一年增长11%。预测者预计今年又会增长9%。 然而,对于银的投资者来说,未来制造商对银的需求前景甚至可能比最近的过去更加明…

使用Linux Systemd部署DotNet Quartz.Net定时任务

开发环境 Windows 10 WSL2Ubuntu 22.04DotNet 6Quartz.Net 代码实战 新建dotnet项目,添加引用Quartz.net包 入口程序: static void Main(string[] args){IConfiguration configuration new ConfigurationBuilder().SetBasePath(Directory.GetCurren…

苹果手机白屏是怎么回事?解决方法分享

苹果手机作为市场上最受欢迎的智能手机之一,其稳定性和流畅性一直备受用户赞誉。然而,偶尔我们也会遇到一些令人头疼的问题,比如苹果手机出现白屏无反应的情况。那么,苹果手机白屏到底是怎么回事呢?本文将为大家详细解…

[RCTF2019]draw

下载是一个文本文档,百度AI cs pu lt 90 fd 500 rt 90 pd fd 100 rt 90 repeat 18[fd 5 rt 10] lt 135 fd 50 lt 135 pu bk 100 pd setcolor pick [ red orange yellow green blue violet ] repeat 18[fd 5 rt 10] rt 90 fd 60 rt 90 bk 30 rt 90 fd 60 pu lt 90 f…

开放式耳机有什么好处?五款高口碑优质爆款直入!

开放式耳机提供了多种好处,尤其适合特定的使用场景和用户群体。以下是开放式耳机的一些显著优势: 1. 佩戴舒适性:开放式耳机不堵塞耳道,允许空气流通,减少耳朵内部的潮湿和压力,适合长时间佩戴&#xff0c…

Tomcat部署项目get请求中文乱码

问题描述 tomcat部署的项目,get请求到后端后,打印日志发现通过RequestParam()接收的参数值乱码。 问题猜测 编码错误导致的乱码。 流程梳理 浏览器发送请求时会自动对请求链接中自带的参数进行编码。编码时一般都是采用UTF-8的格式进行编码。请求到…