优质博文:IT-BLOG-CN
一、题目
给定一个包含非负整数的m x n
网格grid
,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
示例 1:
输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径1→3→1→1→1
的总和最小。
示例 2:
输入:grid = [[1,2,3],[4,5,6]]
输出:12
m == grid.length
n == grid[i].length
1 <= m, n <= 200
0 <= grid[i][j] <= 200
二、代码
动态规划
状态定义:设 dp 为大小 m×n 矩阵,其中 dp[i][j] 的值代表直到走到 (i,j) 的最小路径和。
转移方程:题目要求,只能向右或向下走,换句话说,当前单元格 (i,j) 只能从左方单元格 (i−1,j) 或上方单元格 (i,j−1) 走到,因此只需要考虑矩阵左边界和上边界。
走到当前单元格 (i,j) 的最小路径和 = “从左方单元格 (i−1,j) 与 从上方单元格 (i,j−1) 走来的 两个最小路径和中较小的 ” + 当前单元格值 grid[i][j] 。具体分为以下 4 种情况:
当左边和上边都不是矩阵边界时: 即当i!=0, j!=0时,dp[i][j]=min(dp[i−1][j],dp[i][j−1])+grid[i][j] ;
当只有左边是矩阵边界时: 只能从上面来,即当i=0,j!=0时, dp[i][j]=dp[i][j−1]+grid[i][j] ;
当只有上边是矩阵边界时: 只能从左面来,即当i!=0,j=0时, dp[i][j]=dp[i−1][j]+grid[i][j] ;
当左边和上边都是矩阵边界时: 即当i=0,j=0时,其实就是起点, dp[i][j]=grid[i][j];
初始状态:dp 初始化即可,不需要修改初始 0 值。
返回值:返回 dp 矩阵右下角值,即走到终点的最小路径和。
其实我们完全不需要建立 dp 矩阵浪费额外空间,直接遍历 grid[i][j] 修改即可。这是因为:grid[i][j] = min(grid[i - 1][j], grid[i][j - 1]) + grid[i][j] ;原 grid 矩阵元素中被覆盖为 dp 元素后(都处于当前遍历点的左上方),不会再被使用到。
class Solution {
public int minPathSum(int[][] grid) {
for(int i = 0; i < grid.length; i++) {
for(int j = 0; j < grid[0].length; j++) {
if(i == 0 && j == 0) continue;
else if(i == 0) grid[i][j] = grid[i][j - 1] + grid[i][j];
else if(j == 0) grid[i][j] = grid[i - 1][j] + grid[i][j];
else grid[i][j] = Math.min(grid[i - 1][j], grid[i][j - 1]) + grid[i][j];
}
}
return grid[grid.length - 1][grid[0].length - 1];
}
}
时间复杂度 O(M×N)
遍历整个grid
矩阵元素。
空间复杂度 O(1)
直接修改原矩阵,不使用额外空间。
空间复杂度可以优化到原地工作,也就是O1,但是会破坏原矩阵的数据。通过分析可以发现,数据在扫描矩阵的时候,原数据信息只在扫描的时候用到一次,后续便不会再使用,所以扫描写dp的时候,可以直接进行覆盖,而不会影响最终的结局。也就是利用了系统为grid分配的内存进行记录动态规划的dp。下面贴上代码(代码写的烂,如果有人读到了,还请见谅)
#define min(x,y) ((x) > (y)) ? (y) : (x)
int minPathSum(int** grid, int gridSize, int* gridColSize){
unsigned char i,j;
for(j = 1; j < *gridColSize;j++) grid[0][j] += grid[0][j-1];
for(i = 1; i < gridSize;i++) grid[i][0] += grid[i-1][0];
for(i = 1; i < gridSize; i++)
for(j = 1; j < *gridColSize;j++ ) grid[i][j] += min(grid[i-1][j],grid[i][j-1]);
return grid[gridSize-1][*gridColSize-1];
}