实时手势识别(2)- 基于关键点分类实现零样本图片的任意手势的识别

news2025/1/23 4:00:35

目录

前言

1.实现效果

2.关键点分类网络

3.KPNet训练测试数据准备

4.训练结果

4.1训练过程可视化

4.2验证集上的混淆矩阵

4.测试结果

4.1不同规模模型的测试结果对比

4.2分类结果投影到第一象限

4.3测试集上的混淆矩阵

4.4 二义性手势结果

4.5视频实测

5.零样本的任意手势识别

5.1任意手势关键点获取

5.2任意手势特征编码        

6.训练和测试关键代码

6.1dataset.py

6.2dataloader.py

6.3engine.py

6.4train.py

6.5test.py


前言

        先使用YOLOv8检测手部区域,然后使用YOLOv8-pose对放大的手部区域检测关键点,最后使用PointNet分类关键点,可以实现对任意手势的高精度实时识别

        对于非遮挡手势,仅需1W个参数,即可实现98%的准确率,极限情况下,仅需400个参数,可以达到80%的准确率。

手部关键点数据集准备:基于YOLOv8-pose的手部关键点检测(1)- 手部关键点数据集获取(数据集下载、数据清洗、处理与增强)

手部关键点检测模型训练:基于YOLOv8-pose的手部关键点检测(2)- 模型训练、结果分析和超参数优化

实现手部关键点实时检测

基于YOLOv8-pose的手部关键点检测(3)- 实现实时手部关键点检测


1.实现效果

        hand使用yolov8-m检测得到,resnt表示ResNet18的分类结果,shfnt表示用shufflenet_v2的分类结果,kpnet表示使用关键点分类网络的分类结果,conf是置信度。

        类别效果如下,将原始的18个类别映射为以下的14个类别

mapping_dict = {'call': 0, 'dislike': 1, 'fist': 2, 'four': 3, 'like': 4, 'mute': 5, 'ok': 6, 
                'one': 5, 'palm': 7, 'peace': 8, 'peace_inverted': 8, 'rock': 9, 'stop': 10, 
                'stop_inverted': 10, 'three': 11, 'three2': 12, 'two_up': 13, 'two_up_inverted': 13}


2.关键点分类网络

论文地址:PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

项目地址:(tensorflow) https://github.com/charlesq34/pointnet

                  (pytorch) https://github.com/yanx27/Pointnet_Pointnet2_pytorch

        PointNet主要用于3D点云分类,这里将手部关键点看做3D点到2D平面的投影。如果有深度估计(例如mediapipe)可以取得更好的效果,可以更准确识别正反面手、左右手。

        mlp1_layersmlp2_layers分别表示编码层和解码层全连接的节点数,调整节点数,可以获得不同规模大小的模型。最小的模型nn仅需[8, 8, 8]和[8, 8, 8],48个神经元,即可实现80%的分类准确率。将PointNet简化为关键点(KeyPoint)分类网络(NetKPNet:

import torch
import torch.nn as nn

class KPNet(nn.Module):
    def __init__(self, num_classes, dropout_rate=0.3):
        super(KPNet, self).__init__()

        # shared-MLP1 in encode layers
        # mlp1_layers = [2, 64, 128, 1024]   # X
        # mlp2_layers = [1024, 512, 256, 128, num_classes]    # X

        # mlp1_layers = [2, 64, 128, 512]    # L
        # mlp2_layers = [512, 256, 128, num_classes]    # L

        mlp1_layers = [2, 64, 128, 256]    # M
        mlp2_layers = [256, 128, 64, num_classes]    # M

        # mlp1_layers = [2, 32, 64, 128]    # S
        # mlp2_layers = [128, 64, 32, num_classes]  # S

        # mlp1_layers = [2, 32, 32, 64]    # n
        # mlp2_layers = [64, 32, 32, num_classes]    # n

        # mlp1_layers = [2, 8, 8, 8]  # nn
        # mlp2_layers = [8, 8, 8, num_classes]  # nn

        # mlp1_layers = [2, 64, 128, 512]    # visual
        # mlp2_layers = [512, 256, 128, 2, num_classes]    # visual

        self.mlp1 = nn.ModuleList()
        self.mlp2 = nn.ModuleList()

        # MLP1 layers (Conv1d + BatchNorm1d + ReLU)
        for i in range(len(mlp1_layers) - 1):
            self.mlp1.append(nn.Conv1d(mlp1_layers[i], mlp1_layers[i + 1], 1))
            self.mlp1.append(nn.BatchNorm1d(mlp1_layers[i + 1]))
            self.mlp1.append(nn.ReLU())

        # MLP2 layers (Linear + BatchNorm1d + ReLU)
        for i in range(len(mlp2_layers) - 2):  # Exclude last layer for linear
            self.mlp2.append(nn.Linear(mlp2_layers[i], mlp2_layers[i + 1]))
            self.mlp2.append(nn.BatchNorm1d(mlp2_layers[i + 1]))
            self.mlp2.append(nn.ReLU())
            if i >= 1:  # Apply dropout after the third linear layer
                self.mlp2.append(nn.Dropout(p=dropout_rate))

        # Final layer without ReLU, dropout, or batch normalization
        self.mlp2.append(nn.Linear(mlp2_layers[-2], mlp2_layers[-1]))

    def forward(self, x):
        # MLP1
        x = x.transpose(2, 1)  # (B, 2, N)
        for layer in self.mlp1:
            x = layer(x)
        x = torch.max(x, 2)[0]  # (B, 1024) global feature

        # MLP2
        # feat = None
        for i, layer in enumerate(self.mlp2):
            x = layer(x)
            # if x.shape[1] == 2:
            #     feat = x

        return x    #, feat

# 测试 KPNet
if __name__ == "__main__":
    B, N, C = 32, 100, 2  # Batch size = 32, 100 points, each with 2 dimensions
    num_classes = 10

    model = KPNet(num_classes)
    x = torch.randn(B, N, C)  # Random input
    output = model(x)
    print("Output shape:", output.shape)  # Expected output shape: (32, 10)

3.KPNet训练测试数据准备

        将手部patch的关键点坐标归一化得到。patch如下图:

        将每个类别坐标统一保存为txt文件:

        每行保存一个patch的关键点信息:

        对一行关键点进行可视化,外观特征较为明显:

        关键点相对于点云更容易训练:点云需要随机采样(满足平移、旋转和置换不变性),而关键点的输入顺序是固定的,方向也是可以固定的。(根据需要,训练时可以加入旋转)。


4.训练结果

4.1训练过程可视化

        可以看到约40轮就收敛了,每轮训练约13秒(2W条关键点),大概10分钟就能训练完。

4.2验证集上的混淆矩阵

        主要错误:将three2错误预测为two(16个),将palm错误预测为stop(8个),将two错误预测为two_up。这也是符合预期的,这几类手势本身相似,会很容易受视角影响其余每类准确率都在99%以上


4.测试结果

4.1不同规模模型的测试结果对比

        X号对应于原PointNet的网络设计,nn号为每层最小神经元尝试,总共参数仅400多个,就可以达到80+%的分类准确率

模型

型号

size

(KB)

param

instance

(test)

P

(test)

R

(test)

mAP

(50:95)

Loss

(test)

dropout
nn14438122,7200.86140.82580.84740.46930
n437,862122,7200.98040.97610.97840.09970.3
S10318,722122,7200.98420.98030.98260.09120.3
M35740,834122,7200.98650.98400.98600.07620.3
L992224,218122,7200.98680.98360.98630.07310.3
X3,4001,701,514122,7200.98480.98480.98630.07370.3

4.2分类结果投影到第一象限

        将特征映射为2为特征,在第一象限进行投影,可以看到14个类别被有效分开。不过,由于将负值强行映射到第一象限,导致原点处存在聚集(这也是为什么,分类网络的全连接层最后一层,不要加Relu的原因):

4.3测试集上的混淆矩阵

        测试集上的效果与验证集上类似:

        归一化的混淆矩阵如下图所示,绝大部分手势准确率都在99%以上,fist只用200个训练,导致准确率最低:

4.4 二义性手势结果

        如下图,存在二义性的手势,由于光线等问题,分类网络预测为stop和three,但是利用关键点可以预测为four:

4.5视频实测

        使用分类网络可以区分正反面,可以学习到旋转等特征,比如call都是写着的,横着时候resnet依然可以识别出,但关键点分类无法识别。(因为训练时,没有加入旋转,这样关键点分类可以识别更多的手势语义。)


5.零样本的任意手势识别

5.1任意手势关键点获取

方式1:

        由于我们已经知道了标准手势,我们不需要在获取图片后,再提取关键点。我们可以自己在白板上直接画几个点表示关键点,然后加入随机抖动(限制一定范围内的)产生大量的手势关键点

方式2:

        我们已经训练好了YOLOv8-pose的手部关键点检测网络,我们只需自己用电脑摄像头,调整远近、角度、视角等,即可自动标注获取大量的标准手势。(如果是分类网络,需要不同背景、手部样式,关键点则不需要考虑这些)。

5.2任意手势特征编码        

        在训练完网络后,我们在前向推理中,获取分类结果前一层的特征,用于特征编码。给定一种标准手势,获取其特征编码值(该类手势可以获取几百上千个,然后进行特征聚类,获取更一般的特征);然后对于要判定的手势,计算其特征向量和标准手势编码特征向量的预先相似度。

class KPNet(nn.Module):

    def forward(self, x):
        # MLP1
        x = x.transpose(2, 1)  # (B, 2, N)
        for layer in self.mlp1:
            x = layer(x)
        x = torch.max(x, 2)[0]  # (B, 1024) global feature

        # MLP2
        feat = None
        for i, layer in enumerate(self.mlp2):
            x = layer(x)
            if i == len(layer) - 2:
                feat = x

        return x, feat

6.训练和测试关键代码

6.1dataset.py

import os
import numpy as np
from torch.utils.data import Dataset


class KPNetDataset(Dataset):
    def __init__(self, data_dir, mapping_dict, reshape_dim=2, transform=None):
        """
        :param data_dir: 数据文件夹的根目录
        :param mapping_dict: 类别映射字典,key 为文件名,value 为类别值
        :param reshape_dim: 重新调整数据形状的维度,默认是 2,即将一行的数据 reshape 为 [-1, 2]
        :param transform: 数据增强的百分比,0~10%之间,None表示不做增强
        """
        self.data_dir = data_dir
        self.mapping_dict = mapping_dict
        self.reshape_dim = reshape_dim
        self.transform = transform
        self.file_list = []
        self.labels = []

        # 构建 file_list 和 labels 列表
        self._prepare_file_index()

    def _prepare_file_index(self):
        """
        构建 file_list 和 labels 列表,存储每一行数据的文件路径及其标签。
        """
        for file_name, label in self.mapping_dict.items():
            file_path = os.path.join(self.data_dir, file_name + '.txt')
            if not os.path.exists(file_path):
                raise FileNotFoundError(f"File {file_path} does not exist.")

            with open(file_path, 'r') as file:
                lines = file.readlines()
                for _ in lines:
                    self.file_list.append(file_path)
                    self.labels.append(label)

    def __len__(self):
        return len(self.file_list)

    def __getitem__(self, idx):
        file_path = self.file_list[idx]
        label = self.labels[idx]

        # 读取指定文件的对应行数据
        with open(file_path, 'r') as file:
            lines = file.readlines()
            line = lines[idx - self.file_list.index(file_path)].strip()
            points = np.array(list(map(float, line.split()))).reshape(-1, self.reshape_dim)

        # 数据增强
        if self.transform:
            points = self._apply_transform(points)

        return points, label

    def _apply_transform(self, points):
        """
        应用随机抖动数据增强,并将超出范围的点置为(0, 0)。
        :param points: 关键点数组,形状为 [n, 2]
        :return: 增强后的关键点数组
        """
        jitter = np.random.uniform(-self.transform, self.transform, points.shape)
        points += jitter

        # 找到超出 [0, 1] 范围的点,并将其置为 (0, 0)
        mask = (points < 0) | (points > 1)
        points[np.any(mask, axis=1)] = [0, 0]

        return points


# 主程序
if __name__ == "__main__":
    import cv2

    data_dir = r'./datasets/hagrid/yolo_pose_point/val'
    mapping_dict = {
        'call': 0,
    }

    # 初始化数据集
    dataset = KPNetDataset(data_dir, mapping_dict, reshape_dim=2, transform=0.02)

    # 打印数据集的大小
    print(f'Total items in dataset: {len(dataset)}')

    # 测试读取前 5 条数据
    for i in range(min(5, len(dataset))):
        data, label = dataset[i]
        print(f'Item {i}: Data shape: {data.shape}, Label: {label}')
        # print(data.tolist())

        # 创建白色背景的图像
        canvas_size = 224
        img = np.ones((canvas_size, canvas_size, 3), dtype=np.uint8) * 255

        # 将归一化坐标转换为画布上的坐标,并绘制蓝色点
        for point in data:
            x, y = point
            x = int(x * canvas_size)
            y = int(y * canvas_size)
            cv2.circle(img, (x, y), radius=3, color=(255, 0, 0), thickness=-1)  # 蓝色点

        # 显示图像
        cv2.imshow(f'Item {i}', img)
        cv2.waitKey(0)  # 按任意键继续
        cv2.destroyAllWindows()

6.2dataloader.py

import torch
from torch.utils.data import DataLoader
from dataset import KPNetDataset


def create_dataloader(data_dir, mapping_dict, phase='train', reshape_dim=2, batch_size=32, num_workers=4,
                      transform=None):
    """
    创建并返回一个 DataLoader。

    :param data_dir: 数据根目录。
    :param mapping_dict: 类别映射字典,key 为文件名,value 为类别值。
    :param phase: 当前数据集的阶段(train, val, test)。
    :param reshape_dim: 将数据 reshape 为 [n, reshape_dim] 的维度。
    :param batch_size: 批大小。
    :param num_workers: 用于数据加载的子进程数。
    :param transform: 数据增强的百分比,0~10%之间,None表示不做增强。
    :return: 返回 DataLoader。
    """
    shuffle = True if phase == 'train' else False
    transform = transform if phase == 'train' else None
    dataset = KPNetDataset(data_dir, mapping_dict, reshape_dim, transform)

    # 使用默认的collate_fn
    dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)

    return dataloader


# 主程序(用于测试)
if __name__ == "__main__":
    data_dir = r'./datasets/hagrid/yolo_pose_point/val'
    mapping_dict = {
        'call': 0,
        # 可以添加更多映射
    }

    # 创建训练集 DataLoader(应用 2% 的数据增强)
    train_dataloader = create_dataloader(data_dir, mapping_dict, phase='train', transform=0.02, batch_size=4)

    # 测试读取训练集数据
    for i, (data, label) in enumerate(train_dataloader):
        print(f'Train Batch {i}:')
        print(f'Data shape: {data.shape}, Labels: {label.shape}')
        if i == 2:  # 仅测试前三个批次
            break

    # 创建验证集 DataLoader(不做数据增强)
    val_dataloader = create_dataloader(data_dir, mapping_dict, phase='val', batch_size=4)

    # 测试读取验证集数据
    for i, (data, label) in enumerate(val_dataloader):
        print(f'Validation Batch {i}:')
        print(f'Data shape: {data.shape}, Labels: {label.shape}')
        if i == 2:  # 仅测试前三个批次
            break

6.3engine.py

import torch
import torch.nn as nn
from sklearn.metrics import classification_report
from tqdm import tqdm


def train_one_epoch(model, dataloader, optimizer, criterion, device, label_dict):
    model.train()
    running_loss = 0.0
    correct_predictions = 0
    total_samples = 0
    all_labels = []
    all_predictions = []

    for data_batches, label_batches in tqdm(dataloader, desc="Training", unit="batch"):
        data_batches = data_batches.to(device).float()
        label_batches = label_batches.to(device)

        optimizer.zero_grad()
        outputs = model(data_batches)
        loss = criterion(outputs, label_batches)
        loss.backward()
        optimizer.step()

        running_loss += loss.item() * data_batches.size(0)
        _, predicted = torch.max(outputs, 1)

        correct_predictions += (predicted == label_batches).sum().item()
        total_samples += label_batches.size(0)

        all_labels.extend(label_batches.cpu().numpy())
        all_predictions.extend(predicted.cpu().numpy())

    epoch_loss = running_loss / total_samples
    epoch_accuracy = correct_predictions / total_samples

    # 将标签索引映射回 label_dict 中的标签名称
    target_names = [label_dict[i] for i in sorted(label_dict.keys())]
    classification_metrics = classification_report(all_labels, all_predictions, target_names=target_names,
                                                   output_dict=True, zero_division=0, digits=3)

    overall_recall = classification_metrics["macro avg"]["recall"]

    return epoch_loss, epoch_accuracy, overall_recall, classification_metrics


def test_one_epoch(model, dataloader, criterion, device, label_dict):
    model.eval()
    running_loss = 0.0
    correct_predictions = 0
    total_samples = 0
    all_labels = []
    all_predictions = []

    with torch.no_grad():
        for data_batches, label_batches in tqdm(dataloader, desc="Validation", unit="batch"):
            data_batches = data_batches.to(device).float()
            label_batches = label_batches.to(device)

            outputs = model(data_batches)
            loss = criterion(outputs, label_batches)

            running_loss += loss.item() * data_batches.size(0)
            _, predicted = torch.max(outputs, 1)

            correct_predictions += (predicted == label_batches).sum().item()
            total_samples += label_batches.size(0)

            all_labels.extend(label_batches.cpu().numpy())
            all_predictions.extend(predicted.cpu().numpy())

    epoch_loss = running_loss / total_samples
    epoch_accuracy = correct_predictions / total_samples

    # 将标签索引映射回 label_dict 中的标签名称
    target_names = [label_dict[i] for i in sorted(label_dict.keys())]
    classification_metrics = classification_report(all_labels, all_predictions, target_names=target_names,
                                                   output_dict=True, zero_division=0, digits=3)

    overall_recall = classification_metrics["macro avg"]["recall"]

    return epoch_loss, epoch_accuracy, overall_recall, classification_metrics


if __name__ == "__main__":
    from KPNet import KPNet
    from dataloader import create_dataloader

    train_data_dir = r'./datasets/hagrid/yolo_pose_point/test'
    val_data_dir = r'./datasets/hagrid/yolo_pose_point/val'
    mapping_dict = {'call': 0, 'three': 1, 'palm': 2}
    num_classes = 3
    batch_size = 1024
    num_workers = 1
    learning_rate = 0.001
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    # 创建模型、损失函数、优化器
    model = KPNet(num_classes).to(device)
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

    # 创建数据加载器
    train_dataloader = create_dataloader(train_data_dir, mapping_dict, phase='train', batch_size=batch_size,
                                         num_workers=num_workers, transform=0.02)
    val_dataloader = create_dataloader(val_data_dir, mapping_dict, phase='val', batch_size=batch_size,
                                       num_workers=num_workers)

    # 训练一轮
    train_loss, train_accuracy, train_recall, train_metrics = train_one_epoch(model, train_dataloader, optimizer,
                                                                              criterion, device, mapping_dict)

    # 测试一轮
    val_loss, val_accuracy, val_recall, val_metrics = test_one_epoch(model, val_dataloader, criterion, device,
                                                                     mapping_dict)

6.4train.py

import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim.lr_scheduler import ExponentialLR
import os
import logging
import time
from KPNet import KPNet
from dataloader import create_dataloader
from engine import train_one_epoch, test_one_epoch
from torch.utils.tensorboard import SummaryWriter
from tabulate import tabulate
import matplotlib.pyplot as plt


def train_pipline(train_data_dir, val_data_dir, mapping_dict, label_dict, num_classes, batch_size=256, num_workers=4,
                  initial_lr=0.01, num_epochs=100, min_lr=0.00005, optimizer_choice='adam'):
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    # 创建模型、损失函数、优化器
    model = KPNet(num_classes).to(device)
    criterion = nn.CrossEntropyLoss()

    if optimizer_choice.lower() == 'adam':
        optimizer = optim.Adam(model.parameters(), lr=initial_lr)
    else:
        optimizer = optim.SGD(model.parameters(), lr=initial_lr, momentum=0.9)

    # 指数衰减的学习率调度器
    scheduler = ExponentialLR(optimizer, gamma=0.95)

    # 创建数据加载器
    train_dataloader = create_dataloader(train_data_dir, mapping_dict, phase='train', batch_size=batch_size,
                                         num_workers=num_workers, transform=0.01)
    val_dataloader = create_dataloader(val_data_dir, mapping_dict, phase='val', batch_size=batch_size // 4,
                                       num_workers=num_workers)

    # 日志和模型保存配置
    timestamp = time.strftime("%Y%m%d-%H%M%S")
    model_save_dir = os.path.join('model_save', timestamp)
    os.makedirs(model_save_dir, exist_ok=True)

    log_dir = os.path.join('run_log', timestamp)
    os.makedirs(log_dir, exist_ok=True)
    log_filename = os.path.join(log_dir, 'training.log')

    logging.basicConfig(filename=log_filename, level=logging.INFO,
                        format='%(asctime)s - %(levelname)s - %(message)s')

    # 创建参数日志
    args_log_filename = os.path.join(log_dir, 'args.log')
    with open(args_log_filename, 'w') as f:
        f.write(f"train_data_dir: {train_data_dir}\n")
        f.write(f"val_data_dir: {val_data_dir}\n")
        f.write(f"mapping_dict: {mapping_dict}\n")
        f.write(f"label_dict: {label_dict}\n")
        f.write(f"num_classes: {num_classes}\n")
        f.write(f"batch_size: {batch_size}\n")
        f.write(f"num_workers: {num_workers}\n")
        f.write(f"initial_lr: {initial_lr}\n")
        f.write(f"num_epochs: {num_epochs}\n")
        f.write(f"min_lr: {min_lr}\n")
        f.write(f"optimizer_choice: {optimizer_choice}\n")

    # 创建 TensorBoard writer
    writer = SummaryWriter(log_dir=log_dir)

    best_accuracy = 0.0
    best_recall = 0.0

    for epoch in range(num_epochs):
        train_loss, train_accuracy, train_recall, train_metrics = train_one_epoch(model, train_dataloader, optimizer,
                                                                                  criterion, device, label_dict)

        val_loss, val_accuracy, val_recall, val_metrics = test_one_epoch(model, val_dataloader, criterion, device,
                                                                         label_dict)

        # 学习率调度
        scheduler.step()
        current_lr = scheduler.get_last_lr()[0]
        if current_lr < min_lr:
            for param_group in optimizer.param_groups:
                param_group['lr'] = min_lr

        # TensorBoard记录
        writer.add_scalar('Loss/train', train_loss, epoch)
        writer.add_scalar('Loss/val', val_loss, epoch)
        writer.add_scalar('Accuracy/train', train_accuracy, epoch)
        writer.add_scalar('Accuracy/val', val_accuracy, epoch)
        writer.add_scalar('Recall/train', train_recall, epoch)
        writer.add_scalar('Recall/val', val_recall, epoch)

        # 每个类别的准确率和召回率记录在 TensorBoard 中
        for category_index, category_name in label_dict.items():
            writer.add_scalar(f'Accuracy/train_{category_name}', train_metrics[category_name]['precision'], epoch)
            writer.add_scalar(f'Recall/train_{category_name}', train_metrics[category_name]['recall'], epoch)
            writer.add_scalar(f'Accuracy/val_{category_name}', val_metrics[category_name]['precision'], epoch)
            writer.add_scalar(f'Recall/val_{category_name}', val_metrics[category_name]['recall'], epoch)

        # 日志记录
        logging.info(f'Epoch {epoch + 1}/{num_epochs}, '
                     f'Train Loss: {train_loss:.4f}, Train Accuracy: {train_accuracy:.4f}, Train Recall: {train_recall:.4f}, '
                     f'Validation Loss: {val_loss:.4f}, Validation Accuracy: {val_accuracy:.4f}, Validation Recall: {val_recall:.4f}, '
                     f'Learning Rate: {current_lr:.6f}')

        print(f'Epoch {epoch + 1}/{num_epochs}, '
              f'Train Loss: {train_loss:.4f}, Train Accuracy: {train_accuracy:.4f}, Train Recall: {train_recall:.4f}, '
              f'Validation Loss: {val_loss:.4f}, Validation Accuracy: {val_accuracy:.4f}, Validation Recall: {val_recall:.4f}, '
              f'Learning Rate: {current_lr:.6f}')

        # 保存最佳模型:先比准确率,再比召回率
        if val_accuracy > best_accuracy or (val_accuracy == best_accuracy and val_recall > best_recall):
            best_accuracy = val_accuracy
            best_recall = val_recall
            best_model_wts = model.state_dict()
            best_model_path = os.path.join(model_save_dir, 'best_model.pth')
            torch.save(best_model_wts, best_model_path)
            logging.info(f'Best model saved with accuracy: {best_accuracy:.4f} and recall: {best_recall:.4f}')
            print(f'Best model saved with accuracy: {best_accuracy:.4f} and recall: {best_recall:.4f}')

        time.sleep(0.3)  # 防止 tqdm 输出错位

    # 保存最后一轮模型
    last_model_path = os.path.join(model_save_dir, 'last_model.pth')
    torch.save(model.state_dict(), last_model_path)
    logging.info('Last model saved.')
    print('Last model saved.')

    # 关闭 TensorBoard writer
    writer.close()

    # 加载并验证最佳模型
    model.load_state_dict(torch.load(best_model_path))
    val_loss, val_accuracy, val_recall, val_metrics = test_one_epoch(model, val_dataloader, criterion, device,
                                                                     label_dict)

    print(
        f'Best Model Validation Loss: {val_loss:.4f}, Validation Accuracy: {val_accuracy:.4f}, Validation Recall: {val_recall:.4f}')
    print(f"Best Model Validation Metrics:\n")

    # 在命令行中以表格形式显示验证指标
    print_metrics_table(val_metrics, label_dict.values())

    # 将验证指标保存到日志文件
    val_best_model_log_filename = os.path.join(log_dir, 'val_best_model.log')
    with open(val_best_model_log_filename, 'w') as f:
        f.write(f'Best Model Validation Loss: {val_loss:.4f}, Validation Accuracy: {val_accuracy:.4f}, Validation Recall: {val_recall:.4f}\n')
        f.write(f"Best Model Validation Metrics:\n")
        log_content = tabulate([
            [category,
             f"{metrics['precision']:.3f}" if isinstance(metrics, dict) else 'N/A',
             f"{metrics['recall']:.3f}" if isinstance(metrics, dict) else 'N/A',
             f"{metrics['f1-score']:.3f}" if isinstance(metrics, dict) else 'N/A']
            for category, metrics in val_metrics.items()
        ], headers=['Category', 'Precision', 'Recall', 'F1-Score'], tablefmt='grid')

        f.write(log_content)  # 写入到日志文件
        logging.info("\n" + log_content)  # 记录到日志

    # 绘制并保存训练过程的图像
    plot_and_save_separate_graphs(log_dir, num_epochs)


def print_metrics_table(metrics, class_names):
    """
    在命令行中以表格形式打印验证集的分类指标
    """
    table = []
    for category in class_names:
        precision = metrics[category]['precision']
        recall = metrics[category]['recall']
        f1_score = metrics[category]['f1-score']
        table.append([category, f"{precision:.3f}", f"{recall:.3f}", f"{f1_score:.3f}"])

    # 打印表格
    print(tabulate(table, headers=['Category', 'Precision', 'Recall', 'F1-Score'], tablefmt='grid'))


def plot_and_save_separate_graphs(log_dir, num_epochs):
    """
    分别绘制并保存总损失和其他指标(准确率、召回率)的图像
    """
    from tensorboard.backend.event_processing.event_accumulator import EventAccumulator

    # 加载 TensorBoard 日志
    event_acc = EventAccumulator(log_dir)
    event_acc.Reload()

    steps = range(num_epochs)

    # 总损失曲线
    train_loss = [scalar_event.value for scalar_event in event_acc.Scalars('Loss/train')]
    val_loss = [scalar_event.value for scalar_event in event_acc.Scalars('Loss/val')]

    plt.figure(figsize=(10, 6))
    plt.plot(steps, train_loss, label='Train Loss')
    plt.plot(steps, val_loss, label='Validation Loss')
    plt.xlabel('Epoch')
    plt.ylabel('Loss')
    plt.title('Train and Validation Loss Over Epochs')
    plt.legend()
    plt.savefig(os.path.join(log_dir, 'loss_curve.png'))

    # 总准确率和召回率曲线
    train_accuracy = [scalar_event.value for scalar_event in event_acc.Scalars('Accuracy/train')]
    val_accuracy = [scalar_event.value for scalar_event in event_acc.Scalars('Accuracy/val')]
    train_recall = [scalar_event.value for scalar_event in event_acc.Scalars('Recall/train')]
    val_recall = [scalar_event.value for scalar_event in event_acc.Scalars('Recall/val')]

    plt.figure(figsize=(10, 6))
    plt.plot(steps, train_accuracy, label='Train Accuracy')
    plt.plot(steps, val_accuracy, label='Validation Accuracy')
    plt.plot(steps, train_recall, label='Train Recall')
    plt.plot(steps, val_recall, label='Validation Recall')
    plt.xlabel('Epoch')
    plt.ylabel('Accuracy/Recall')
    plt.title('Accuracy and Recall Over Epochs')
    plt.legend()
    plt.savefig(os.path.join(log_dir, 'accuracy_recall_curve.png'))


if __name__ == "__main__":
    train_data_dir = r'./datasets/hagrid/yolo_pose_point/test'
    val_data_dir = r'./datasets/hagrid/yolo_pose_point/val'
    # mapping_dict = {'call': 0, 'dislike': 1, 'fist': 2, 'four': 3, 'like': 4, 'mute': 5, 'ok': 6, 'one': 5, 'palm': 7,
    #                 'peace': 8, 'peace_inverted': 8, 'rock': 9, 'stop': 10, 'stop_inverted': 10, 'three': 11,
    #                 'three2': 12, 'two_up': 13, 'two_up_inverted': 13, 'no_gesture': 14}
    # label_dict = {0: 'six', 1: 'dislike', 2: 'fist', 3: 'four', 4: 'like', 5: 'one', 6: 'ok', 7: 'palm', 8: 'two',
    #               9: 'rock', 10: 'stop', 11: 'three', 12: 'three2', 13: 'two_up', 14: 'no_gesture'}
    mapping_dict = {'call': 0, 'dislike': 1, 'fist': 2, 'four': 3, 'like': 4, 'mute': 5, 'ok': 6,
                    'one': 5, 'palm': 7, 'peace': 8, 'peace_inverted': 8, 'rock': 9, 'stop': 10,
                    'stop_inverted': 10, 'three': 11, 'three2': 12, 'two_up': 13, 'two_up_inverted': 13}
    label_dict = {0: 'six', 1: 'dislike', 2: 'fist', 3: 'four', 4: 'like', 5: 'one', 6: 'ok', 7: 'palm', 8: 'two',
                  9: 'rock', 10: 'stop', 11: 'three', 12: 'three2', 13: 'two_up'}
    num_classes = len(label_dict)
    batch_size = 512
    num_workers = 4
    initial_lr = 0.01
    num_epochs = 100
    min_lr = 0.0001
    optimizer_choice = 'adam'  # or 'sgd'

    train_pipline(train_data_dir, val_data_dir, mapping_dict, label_dict, num_classes, batch_size, num_workers, initial_lr,
                  num_epochs, min_lr, optimizer_choice)

6.5test.py

import torch
import torch.nn as nn
import os
import numpy as np
import time
from sklearn.metrics import confusion_matrix, classification_report
import matplotlib.pyplot as plt
import seaborn as sns
from KPNet import KPNet
from dataloader import create_dataloader
from engine import test_one_epoch
from tabulate import tabulate


def test_pipeline(test_data_dir, model_path, mapping_dict, label_dict, num_classes, batch_size=256, num_workers=4):
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    # 加载模型
    model = KPNet(num_classes).to(device)
    model.load_state_dict(torch.load(model_path))
    model.eval()

    # 创建数据加载器
    test_dataloader = create_dataloader(test_data_dir, mapping_dict, phase='val', batch_size=batch_size // 4,
                                        num_workers=num_workers)

    # 获取模型时间戳目录
    model_timestamp = os.path.basename(os.path.dirname(model_path))
    output_dir = os.path.join('output', model_timestamp)

    # 确保 output 目录存在
    os.makedirs(output_dir, exist_ok=True)

    # 查找下一个测试文件夹编号
    test_folders = [f for f in os.listdir(output_dir) if f.startswith('test_')]
    test_numbers = [int(f.split('_')[1]) for f in test_folders if f.split('_')[1].isdigit()]
    next_test_number = max(test_numbers) + 1 if test_numbers else 1
    test_output_dir = os.path.join(output_dir, f'test_{next_test_number:02d}')
    os.makedirs(test_output_dir, exist_ok=True)

    # 运行测试
    criterion = nn.CrossEntropyLoss()
    test_loss, test_accuracy, test_recall, test_metrics = test_one_epoch(model, test_dataloader, criterion, device,
                                                                         label_dict)

    # 打印并保存测试结果
    test_results_log_filename = os.path.join(test_output_dir, 'test_results.log')
    with open(test_results_log_filename, 'w') as f:
        f.write(f'Test Loss: {test_loss:.4f}\n')
        f.write(f'Test Accuracy: {test_accuracy:.4f}\n')
        f.write(f'Test Recall: {test_recall:.4f}\n')
        f.write(f"Test Metrics:\n")

        log_content = tabulate([
            [category,
             f"{metrics['precision']:.3f}" if isinstance(metrics, dict) else 'N/A',
             f"{metrics['recall']:.3f}" if isinstance(metrics, dict) else 'N/A',
             f"{metrics['f1-score']:.3f}" if isinstance(metrics, dict) else 'N/A',
             metrics['support']]
            for category, metrics in test_metrics.items() if category != 'accuracy'
        ], headers=['Category', 'Precision', 'Recall', 'F1-Score', 'Instance'], tablefmt='grid')

        f.write(log_content)

    # 计算并保存混淆矩阵
    all_labels = []
    all_predictions = []

    for data_batches, label_batches in test_dataloader:
        data_batches = data_batches.to(device).float()
        label_batches = label_batches.to(device)

        with torch.no_grad():
            outputs = model(data_batches)
            _, predicted = torch.max(outputs, 1)

        all_labels.extend(label_batches.cpu().numpy())
        all_predictions.extend(predicted.cpu().numpy())

    cm = confusion_matrix(all_labels, all_predictions, labels=list(label_dict.keys()))
    cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]

    plt.figure(figsize=(10, 8))
    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=label_dict.values(), yticklabels=label_dict.values())
    plt.title('Confusion Matrix')
    plt.xlabel('Predicted Label')
    plt.ylabel('True Label')
    plt.savefig(os.path.join(test_output_dir, 'confusion_matrix.png'))

    plt.figure(figsize=(10, 8))
    sns.heatmap(cm_normalized, annot=True, fmt='.2f', cmap='Blues', xticklabels=label_dict.values(),
                yticklabels=label_dict.values())
    plt.title('Normalized Confusion Matrix')
    plt.xlabel('Predicted Label')
    plt.ylabel('True Label')
    plt.savefig(os.path.join(test_output_dir, 'normalized_confusion_matrix.png'))

    # 计算 mAP
    precision_values = []
    recall_values = []

    for category in label_dict.values():
        if category in test_metrics:
            precision_values.append(test_metrics[category]['precision'])
            recall_values.append(test_metrics[category]['recall'])

    mAP50 = np.mean([p >= 0.5 for p in precision_values])
    mAP75 = np.mean([p >= 0.75 for p in precision_values])
    mAP50_95 = np.mean([p for p in precision_values])

    with open(test_results_log_filename, 'a') as f:
        f.write(f"\nmAP50: {mAP50:.4f}\n")
        f.write(f"mAP75: {mAP75:.4f}\n")
        f.write(f"mAP50:95: {mAP50_95:.4f}\n")


if __name__ == "__main__":
    test_data_dir = r'./datasets/hagrid/yolo_pose_point/train'
    model_path = r'./KPNet/model_save/20240816-172047/best_model.pth'
    mapping_dict = {'call': 0, 'dislike': 1, 'fist': 2, 'four': 3, 'like': 4, 'mute': 5, 'ok': 6, 'one': 5, 'palm': 7,
                    'peace': 8, 'peace_inverted': 8, 'rock': 9, 'stop': 10, 'stop_inverted': 10, 'three': 11,
                    'three2': 12, 'two_up': 13, 'two_up_inverted': 13}
    label_dict = {0: 'six', 1: 'dislike', 2: 'fist', 3: 'four', 4: 'like', 5: 'one', 6: 'ok', 7: 'palm', 8: 'two',
                  9: 'rock', 10: 'stop', 11: 'three', 12: 'three2', 13: 'two_up'}
    num_classes = len(label_dict)
    batch_size = 512
    num_workers = 4

    test_pipeline(test_data_dir, model_path, mapping_dict, label_dict, num_classes, batch_size, num_workers)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2055146.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

深入理解计算机系统 CSAPP 实验lab:Architecture Lab

前期准备参考: 深入理解计算机系统 CSAPP 第四章 Y86-64模拟器 安装与使用-CSDN博客 writeup上写了要求,这里就不赘述了. Part A: sum.ys: # Execution begins at address 0 .pos 0irmovq stack, %rsp # Set up stack pointercall main # Execute main programhalt # …

【CRT实用小技巧(1)】一键发送命令到所有会话窗口

CRT实用小技巧&#xff08;1&#xff09;一键发送命令到所有会话窗口 在view&#xff08;视图&#xff09;中打开command windows&#xff08;命令窗口&#xff09; 打开后&#xff0c;可以看到下面的命令窗口了 然后再下面的命令窗口中&#xff0c;右键出菜单&#xff0c;选择…

centos7突然掉电后启动报错/dev/mapper/centos-root does not exist

问题现象 物理服务器SR588已安装centos7&#xff0c;突然掉电后系统进不去&#xff0c;提示/dev/mapper/centos-root does not exist 问题解决过程 网上搜索相关的解决方法 1、 用此方法不行 2、 用此方法也是不行 3、 分析查看ls /dev/mapper&#xff0c;目录底下没有cent…

Kafka运行机制(一):Kafka集群启动,controller选举,生产消费流程

前置知识 Kafka基本概念https://blog.csdn.net/dxh9231028/article/details/141270920?spm1001.2014.3001.5501 1. Kafka集群启动 Kafka在启动集群中的各个broker时&#xff0c;broker会向controller注册自己&#xff0c;并且从controller节点同步集群元数据。 broker是Kaf…

栈和堆的区别

存储内容不同&#xff1a; 栈区&#xff1a;主要存储函数调用时的局部变量、函数参数等。栈底是函数调用后的下一条指令。 堆区&#xff1a;存储动态分配的内存&#xff0c;如使用 new 分配的内存&#xff0c;具体内容由程序员安排。 管理方式不同&#xff1a; 栈区&#x…

牛客刷题二叉树(三)

1.输出二叉树的右视图 import java.util.*;public class Solution {/*** 代码中的类名、方法名、参数名已经指定&#xff0c;请勿修改&#xff0c;直接返回方法规定的值即可** 求二叉树的右视图* param preOrder int整型一维数组 先序遍历* param inOrder int整型一维数组 中序…

【无线通信发展史⑤】万有引力定律的推导前奏3.0,本次学习开普勒三大定律,成就“天空立法者”的美名

前言&#xff1a;用这几个问答形式来解读下我这个系列的来龙去脉。如果大家觉得本篇文章不水的话希望帮忙点赞收藏加关注&#xff0c;你们的鼓舞是我继续更新的动力。 我为什么会写这个系列呢&#xff1f; 首先肯定是因为我本身就是一名从业通信者&#xff0c;想着更加了解自…

高性能 Web 服务器:让网页瞬间绽放的魔法引擎(中)

目录 一.Nginx版本和安装方式:源码编译安装 1.验证版本及编译参数 2.使用安装完成的二进制文件nginx 3.Nginx 启动文件 二.平滑升级和回滚 三.全局配置 实现 nginx 的高并发配置 四.核心配置&#xff1a;新建一个 PC web 站点 五.核心配置&#xff1a;location的详细使用…

vscode 远程控制ssh操作步骤

1.下载拓展Remote - SSH 打开Visual Studio Code&#xff0c;进入拓展市场(CtrlShiftX)&#xff0c;下载拓展Remote - SSH 2.选择远程(隧道/SSH)类别 点击远程资源管理器选项卡&#xff0c;并选择远程(隧道/SSH)类别 4.在弹出的选择配置文件中&#xff0c;点击第一个 5. 连接到…

基于PHP网上投票系统---附源码121500

摘 要 随着全球Internet的迅猛发展和计算机应用的普及&#xff0c;特别是近几年无线网络的广阔覆盖以及无线终端设备的爆炸式增长&#xff0c;使得人们能够随时随地的访问网络&#xff0c;以获取最新信息、参与网络活动、和他人在线互动。为了能及时地了解民情民意&#xff0c;…

深度学习基础—学习率衰减与局部最优问题

1.学习率衰减 下图中&#xff0c;蓝色的线是min-batch梯度下降法过程中较大学习率的的优化路径&#xff0c;绿线是较小学习率的优化路径。 如果使用min-batch梯度下降法&#xff0c;在模型的学习过程中&#xff0c;会有很多噪声&#xff0c;在靠近最小值的时候&#xff0c;由于…

考试:数据库系统(02)

关系代数 ◆并&#xff1a;结果是两张表中所有记录数合并&#xff0c;相同记录只显示一次。 ◆交&#xff1a;结果是两张表中相同的记录。 ◆差&#xff1a;S1-S2, 结果是S1表中有而S2表中没有的那些记录。 ◆笛卡尔积&#xff1a;S1*S2,产生的结果包括S1和S2的所有属性列&…

Redis7基础篇(二)

目录 持化双雄 RDB 案例演示 优势 劣势 AOF 案例演示 正常恢复 异常恢复 优点 缺点​编辑 aof重写机制 ​编辑​编辑重写的原理​编辑 小总结 rdb和aof的混合持久化 纯缓存模式 redis的持久化最终还是靠硬盘 持化双雄 redis提供了一rdb aof 不持久化 rdbaof的…

ansible相关模块

copy模块(重点) copy模块⽤于对⽂件的远程拷⻉操作&#xff08;如把本地的⽂件拷⻉到远程 的机器上) https://docs.ansible.com/ansible/latest/modules/copy_module.htm l#copy-module 在master上准备⼀个⽂件&#xff0c;拷⻉此⽂件到group1的所有机器上 使⽤content参数直…

Linux之 宝塔面板 通过binlog日志恢复被删除表的数据

参考文章 查找mysql的binlog文件位置 这个命令是用来将MySQL的二进制日志文件(mysql-bin.000021)转换成SQL格式的文件(000021.sql)。 /www/server/mysql/bin/mysqlbinlog --base64-outputDECODE-ROWS -v mysql-bin.000021 > /www/000021.sql 提取sql语句 [rootdata]# …

访问网站出现“此站点不安全”如何解决

在网络浏览中&#xff0c;我们经常会遇到浏览器地址栏出现“此站点不安全”的警告。这通常意味着网站没有使用SSL&#xff08;安全套接层&#xff09;加密来保护用户数据的安全。那么&#xff0c;如何通过获得并安装SSL证书来消除这一警告&#xff0c;确保网站的安全可靠呢&…

未来视界,触手可及:揭秘数字透明屏的奇幻之旅

在这个日新月异的科技时代&#xff0c;每一项创新都如同星辰般璀璨&#xff0c;引领着我们向更加智能、更加梦幻的未来迈进。今天&#xff0c;就让我们一起揭开一项颠覆传统视觉体验的前沿科技——数字透明屏的神秘面纱&#xff0c;探索它如何将未来视界&#xff0c;化为触手可…

C++集成spdlog,spdlog基本使用方法

C集成spdlog&#xff0c;spdlog基本使用方法 何时输出日志第一步&#xff1a;集成 spdlog 到你的项目方法 1&#xff1a;使用包管理器&#xff08;例如 vcpkg 或 conan&#xff09;方法 2&#xff1a;手动集成 第二步&#xff1a;基本使用第三步&#xff1a;设置日志级别第四步…

后端开发刷题 | 反转链表【链表篇】

描述 给定一个单链表的头结点pHead(该头节点是有值的&#xff0c;比如在下图&#xff0c;它的val是1)&#xff0c;长度为n&#xff0c;反转该链表后&#xff0c;返回新链表的表头。 数据范围&#xff1a; 0≤n≤1000 要求&#xff1a;空间复杂度 O(1) &#xff0c;时间复杂度…

xss 漏洞复现

xss 漏洞复现 一&#xff0c;xss game 1&#xff0c;源码 <!-- Challenge --> <h2 id"spaghet"></h2> <script>spaghet.innerHTML (new URL(location).searchParams.get(somebody) || "Somebody") " Toucha Ma Spaghet!…