一、Yolov8obb_kpt
-----------------------------------现已在v8官方库上更新旋转框分割算法和旋转框关键点检测算法--------------------------
------------------------------------------- https://github.com/yzqxy/ultralytics-obb_segment---------------------------------
记得给博主点上⭐,给予博主继续创作好用算法的动力。
可参考博主上一篇文章,Yolov8obb_kpt,旋转框+关键点检测,有向目标检测,判断目标正方向
二、标注工具
标注软件:X-AnyLabeling,可查阅博客进行安装使用
标注旋转框和关键点,生成json文件。
三、json2txt转化为yolov8可训练标签的脚本
# COCO 格式的数据集转化为 YOLO 格式的数据集
# --json_path 输入的json文件路径
# --save_path 保存的文件夹名字,默认为当前目录下的labels。
import os
import json
from tqdm import tqdm
import argparse
import cv2
import numpy as np
parser = argparse.ArgumentParser()
# 这里根据自己的json文件位置,换成自己的就行
parser.add_argument('--json_path',
default=r'D:\Dataset\关键点\tading\coco_kpt_format\annotations\tading_kpt_val.json', type=str,
help="input: coco format(json)")
# 这里设置.txt文件保存位置
parser.add_argument('--save_path', default=r'D:\Dataset\关键点\tading\20220912_hailei\txt\val', type=str,
help="specify where to save the output dir of labels")
arg = parser.parse_args()
def convert(size, box):
dw = 1. / (size[1])
dh = 1. / (size[0])
x = (box[0] + box[2]) / 2.0
y = (box[1] + box[3] )/ 2.0
w = box[2]-box[0]
h = box[3]-box[1]
x = round(x * dw, 6)
w = round(w * dw, 6)
y = round(y * dh, 6)
h = round(h * dh, 6)
return (x, y, w, h)
def check_points_in_rotated_boxes(points, boxes):
"""Check whether point is in rotated boxes
Args:
points (tensor): (1, L, 2) anchor points
boxes (tensor): [B, N, 5] gt_bboxes
eps (float): default 1e-9
Returns:
is_in_box (tensor): (B, N, L)
"""
a = np.array(boxes[0])
b = np.array(boxes[1])
c = np.array(boxes[2])
d = np.array(boxes[3])
ab = b - a
ad = d - a
# [B, N, L, 2]
ap = points - a
# [B, N, L]
norm_ab = np.sum(ab * ab)
# [B, N, L]
norm_ad = np.sum(ad * ad)
# [B, N, L] dot product
ap_dot_ab = np.sum(ap * ab)
# [B, N, L] dot product
ap_dot_ad = np.sum(ap * ad)
# [B, N, L] <A, B> = |A|*|B|*cos(theta)
is_in_box = (ap_dot_ab >= 0) & (ap_dot_ab <= norm_ab) & (ap_dot_ad >= 0) & (
ap_dot_ad <= norm_ad)
return is_in_box
def save_txt(data,ana_txt_save_path,obb_cls_kpt,obb_cls,width,heigth):
with open(os.path.join(ana_txt_save_path, filename.split('.json')[0] + '.txt'), 'w', encoding='utf-8') as f:
# 类别,obbbox,8个kpt
for i in range(len(data['shapes'])):
len_line = 9 + max(len(sublist) for sublist in obb_cls_kpt) * 3
# len_line=9
line = ['0' for _ in range(len_line)]
for obb_i in range(len(obb_cls)):
if data['shapes'][i]['label'] == obb_cls[obb_i]:
line[0] = str(obb_i)
print('obb_cls[obb_i]', obb_cls[obb_i])
# import pdb
# pdb.set_trace()
x1 = data['shapes'][i]['points'][0][0]
y1 = data['shapes'][i]['points'][0][1]
x2 = data['shapes'][i]['points'][1][0]
y2 = data['shapes'][i]['points'][1][1]
x3 = data['shapes'][i]['points'][2][0]
y3 = data['shapes'][i]['points'][2][1]
x4 = data['shapes'][i]['points'][3][0]
y4 = data['shapes'][i]['points'][3][1]
# if x1>x2:
# x3=x2
# x2=x1
# x1=x3
# if y1 > y2:
# y3=y2
# y2=y1
# y1=y3
tatou = [[x1, y1], [x2, y2], [x3, y3], [x4, y4]]
line[1] = str(round(x1 / width, 6))
line[2] = str(round(y1 / heigth, 6))
line[3] = str(round(x2 / width, 6))
line[4] = str(round(y2 / heigth, 6))
line[5] = str(round(x3 / width, 6))
line[6] = str(round(y3 / heigth, 6))
line[7] = str(round(x4 / width, 6))
line[8] = str(round(y4 / heigth, 6))
print(line)
for j in range(len(data['shapes'])):
if len(obb_cls_kpt[obb_i]) > 0:
for kpt_i in range(len(obb_cls_kpt[obb_i])):
if data['shapes'][j]['label'] == obb_cls_kpt[obb_i][kpt_i]:
print('data[]',data['shapes'][j]['label'])
x = data['shapes'][j]['points'][0][0]
y = data['shapes'][j]['points'][0][1]
if check_points_in_rotated_boxes([x, y], tatou):
print('obb_cls_kpt[obb_i][kpt_i]',obb_cls_kpt[obb_i][kpt_i])
x = round(x / width, 6)
y = round(y / heigth, 6)
line[9 + 3 * (kpt_i + 1) - 3] = str(x)
line[9 + 3 * (kpt_i + 1) - 2] = str(y)
line[9 + 3 * (kpt_i + 1) - 1] = '2'
print('line', line)
str_line = ' '.join(line)
print('str_line', str_line)
f.write(str_line + "\n")
f.close()
if __name__ == '__main__':
obb_cls=['旋转框类别一','旋转框类别二','旋转框类别三']
#对应某类别旋转框中关键点,比如旋转框类别一中有4个点,类别二中2个点,三中没有点
obb_cls_kpt=[['1', '2', '3', '4'],[ 'point1', 'point2'],[]]
# obb_cls_kpt = [[], [], []]
json_root = r'D:\Dataset\jsons' # COCO Object Instance 类型的标注
ana_txt_save_path = r'D:\Dataset\labels' # 保存的路径
image_root=r'D:\Dataset\imgs'
for filename in os.listdir(json_root):
json_file=json_root+'\\'+filename
data = json.load(open(json_file, 'r',encoding='utf-8'))
image_file=image_root+'\\'+filename.split('.json')[0]+'.jpg'
# if os.path.exists(image_file)==False:
image=cv2.imdecode(np.fromfile(image_file, dtype=np.uint8), -1)
print(image.shape)
print('image_file',image_file)
width=image.shape[1]
heigth=image.shape[0]
if not os.path.exists(ana_txt_save_path):
os.makedirs(ana_txt_save_path)
save_txt(data,ana_txt_save_path,obb_cls_kpt,obb_cls,width,heigth)
四、运行命令
yolo obb_pose mode=train model=ultralytics/cfg/models/v8/yolov8n-obb-pose.yaml data=ultralytics/cfg/datasets/project/kpt/obb_kpt.yaml batch=8 epochs=100 imgsz=640 workers=0 device=0
yolo task=obb_pose mode=predict model=runs/obb_pose/train/weights/best.pt source=images/train