文章目录
- DMA数据转运
- 验证存储器映像的内容
- 什么时候需要定义常量
- 验证外设寄存器的地址
- 理解ADC1->DR
- main.c
- 初始化DMA
- DMA库函数
- MyDMA.c
- main.c
- DMA+AD多通道
- AD.c
- main.c
DMA数据转运
验证存储器映像的内容
#include "stm32f10x.h" // Device header
#include "Delay.h"
#include "OLED.h"
uint8_t aa=0x66;
//const uint8_t aa=0x66;
int main(void)
{
/*模块初始化*/
OLED_Init(); //OLED初始化
/*显示数组的首地址*/
OLED_ShowHexNum(1, 1, aa, 2);
OLED_ShowHexNum(2, 1, (uint32_t)&aa, 8);
while (1)
{
}
}
地址是20开头,存储的位置是SRAM区
#include "stm32f10x.h" // Device header
#include "Delay.h"
#include "OLED.h"
//uint8_t aa=0x66;
const uint8_t aa=0x66;
int main(void)
{
/*模块初始化*/
OLED_Init(); //OLED初始化
/*显示数组的首地址*/
OLED_ShowHexNum(1, 1, aa, 2);
OLED_ShowHexNum(2, 1, (uint32_t)&aa, 8);
while (1)
{
}
}
const是c语言中表示常量的关键字,在程序中只能读不能写,而Flash里的数据也是只读不写的,在STM32中,使用const定义的变量是存储在Flash里面的,这里aa是08开头,被存储在了Flash里
什么时候需要定义常量
当程序中出现了一大批数据,并且不需要更改时,就可以定义成常量,节省SRAM的空间,比如查找表、字库数据等等
验证外设寄存器的地址
对于变量或常量来说,地址由编译器确定,不同的程序地址可能不一样,是不固定的,而对于外设寄存器来说,地址是固定的,在程序里也可以用结构体很方便的访问寄存器,比如要访问ADC1的DR寄存器,就可以写ADC1->DR
#include "stm32f10x.h" // Device header
#include "Delay.h"
#include "OLED.h"
int main(void)
{
/*模块初始化*/
OLED_Init(); //OLED初始化
/*显示数组的首地址*/
OLED_ShowHexNum(2, 1, (uint32_t)&ADC1->DR, 8);
while (1)
{
}
}
理解ADC1->DR
ADC1是结构体指针,指向的是ADC1外设的起始地址,访问结构体成员,就相当于是加一个地址偏移,起始地址+偏移就是指定的寄存器,这里因为ADC1是一个结构体指针,所以用->符号来取成员
main.c
#include "stm32f10x.h" // Device header
#include "Delay.h"
#include "OLED.h"
#include "MyDMA.h"
uint8_t DataA[] = {0x01, 0x02, 0x03, 0x04}; //定义测试数组DataA,为数据源
uint8_t DataB[] = {0, 0, 0, 0}; //定义测试数组DataB,为数据目的地
int main(void)
{
/*模块初始化*/
OLED_Init(); //OLED初始化
MyDMA_Init((uint32_t)DataA, (uint32_t)DataB, 4); //DMA初始化,把源数组和目的数组的地址传入
/*显示静态字符串*/
OLED_ShowString(1, 1, "DataA");
OLED_ShowString(3, 1, "DataB");
/*显示数组的首地址*/
OLED_ShowHexNum(1, 8, (uint32_t)DataA, 8);
OLED_ShowHexNum(3, 8, (uint32_t)DataB, 8);
while (1)
{
DataA[0] ++; //变换测试数据
DataA[1] ++;
DataA[2] ++;
DataA[3] ++;
OLED_ShowHexNum(2, 1, DataA[0], 2); //显示数组DataA
OLED_ShowHexNum(2, 4, DataA[1], 2);
OLED_ShowHexNum(2, 7, DataA[2], 2);
OLED_ShowHexNum(2, 10, DataA[3], 2);
OLED_ShowHexNum(4, 1, DataB[0], 2); //显示数组DataB
OLED_ShowHexNum(4, 4, DataB[1], 2);
OLED_ShowHexNum(4, 7, DataB[2], 2);
OLED_ShowHexNum(4, 10, DataB[3], 2);
Delay_ms(1000); //延时1s,观察转运前的现象
MyDMA_Transfer(); //使用DMA转运数组,从DataA转运到DataB
OLED_ShowHexNum(2, 1, DataA[0], 2); //显示数组DataA
OLED_ShowHexNum(2, 4, DataA[1], 2);
OLED_ShowHexNum(2, 7, DataA[2], 2);
OLED_ShowHexNum(2, 10, DataA[3], 2);
OLED_ShowHexNum(4, 1, DataB[0], 2); //显示数组DataB
OLED_ShowHexNum(4, 4, DataB[1], 2);
OLED_ShowHexNum(4, 7, DataB[2], 2);
OLED_ShowHexNum(4, 10, DataB[3], 2);
Delay_ms(1000); //延时1s,观察转运后的现象
}
}
初始化DMA
第一步,RCC开启DMA时钟,第二步,直接调用DMA_Init,初始化参数,包括外设和存储器站点的起始地址、数据宽度、地址是否自增、方向、传输计数器、是否需要自动重装、选择触发结构体配置源、通道优先级,所有参数通过一个,之后进行开关控制,DMA_Cmd,给指定的通道使能就完成了,如果选择硬件触发,在对应的外设调用一下XXX_DMACmd,开启一下触发信号的输出,如果需要DMA的中断,调用DMA_ITConfig,开启中断输出,再在NVIC里配置相应的中断通道,然后写中断函数,最后,在运行过程中如果转运完成,传输计数器清0了,这时再想给传输计数器赋值的话,要DMA失能、写传输计数器、DMA使能
DMA库函数
void DMA_DeInit(DMA_Channel_TypeDef* DMAy_Channelx);
//恢复缺省配置
void DMA_Init(DMA_Channel_TypeDef* DMAy_Channelx, DMA_InitTypeDef* DMA_InitStruct);
//初始化
void DMA_StructInit(DMA_InitTypeDef* DMA_InitStruct);
//结构体初始化
void DMA_Cmd(DMA_Channel_TypeDef* DMAy_Channelx, FunctionalState NewState);
//使能
void DMA_ITConfig(DMA_Channel_TypeDef* DMAy_Channelx, uint32_t DMA_IT, FunctionalState NewState);
//中断输出使能
void DMA_SetCurrDataCounter(DMA_Channel_TypeDef* DMAy_Channelx, uint16_t DataNumber);
//DMA_设置当前输出寄存器,给传输计数器写数据
uint16_t DMA_GetCurrDataCounter(DMA_Channel_TypeDef* DMAy_Channelx);
//DMA_获取当前数据寄存器,返回传输计数器的值,如果想看还剩多少数据没有转运,调用这个函数
FlagStatus DMA_GetFlagStatus(uint32_t DMAy_FLAG);
//获取标志位状态
void DMA_ClearFlag(uint32_t DMAy_FLAG);
//清除标志位
ITStatus DMA_GetITStatus(uint32_t DMAy_IT);
//获取中断状态
void DMA_ClearITPendingBit(uint32_t DMAy_IT);
//清除中断挂起位
MyDMA.c
#include "stm32f10x.h" // Device header
uint16_t MyDMA_Size; //定义全局变量,用于记住Init函数的Size,供Transfer函数使用
/**
* 函 数:DMA初始化
* 参 数:AddrA 原数组的首地址
* 参 数:AddrB 目的数组的首地址
* 参 数:Size 转运的数据大小(转运次数)
* 返 回 值:无
*/
void MyDMA_Init(uint32_t AddrA, uint32_t AddrB, uint16_t Size)
{
MyDMA_Size = Size; //将Size写入到全局变量,记住参数Size
/*开启时钟*/
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); //开启DMA的时钟
//DMA是AHB总线的设备,用AHB开启时钟的函数
/*DMA初始化*/
DMA_InitTypeDef DMA_InitStructure; //定义结构体变量
DMA_InitStructure.DMA_PeripheralBaseAddr = AddrA; //外设基地址,给定形参AddrA
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte; //外设数据宽度,选择字节
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Enable; //外设地址自增,选择使能
DMA_InitStructure.DMA_MemoryBaseAddr = AddrB; //存储器基地址,给定形参AddrB
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte; //存储器数据宽度,选择字节
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; //存储器地址自增,选择使能
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; //数据传输方向,选择由外设到存储器
DMA_InitStructure.DMA_BufferSize = Size; //转运的数据大小(转运次数)
//以数据单元指定缓存区大小,数据单元等于外设数据或存储器数据宽度,取决于传输方向。
//以数据单元指定缓存区大小,就是说要传送几个数据单元,数据单元等于传输源端站点的DataSize,简单说BufferSize就是传输计数器,指定传输几次
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal; //模式,选择正常模式
//指定传输计数器是否要自动重装
DMA_InitStructure.DMA_M2M = DMA_M2M_Enable; //存储器到存储器,选择使能
DMA_InitStructure.DMA_Priority = DMA_Priority_Medium; //优先级,选择中等
DMA_Init(DMA1_Channel1, &DMA_InitStructure); //将结构体变量交给DMA_Init,配置DMA1的通道1
/*DMA使能*/
DMA_Cmd(DMA1_Channel1, DISABLE); //这里先不给使能,初始化后不会立刻工作,等后续调用Transfer后,再开始
//第一个参数选择哪个DMA和哪个通道
}
/**
* 函 数:启动DMA数据转运
* 参 数:无
* 返 回 值:无
*/
void MyDMA_Transfer(void)
{
DMA_Cmd(DMA1_Channel1, DISABLE); //DMA失能,在写入传输计数器之前,需要DMA暂停工作
DMA_SetCurrDataCounter(DMA1_Channel1, MyDMA_Size); //写入传输计数器,指定将要转运的次数
DMA_Cmd(DMA1_Channel1, ENABLE); //DMA使能,开始工作
while (DMA_GetFlagStatus(DMA1_FLAG_TC1) == RESET); //等待DMA工作完成
DMA_ClearFlag(DMA1_FLAG_TC1); //清除工作完成标志位
}
main.c
#include "stm32f10x.h" // Device header
#include "Delay.h"
#include "OLED.h"
#include "MyDMA.h"
uint8_t DataA[] = {0x01, 0x02, 0x03, 0x04}; //定义测试数组DataA,为数据源
uint8_t DataB[] = {0, 0, 0, 0}; //定义测试数组DataB,为数据目的地
int main(void)
{
/*模块初始化*/
OLED_Init(); //OLED初始化
MyDMA_Init((uint32_t)DataA, (uint32_t)DataB, 4); //DMA初始化,把源数组和目的数组的地址传入
/*显示静态字符串*/
OLED_ShowString(1, 1, "DataA");
OLED_ShowString(3, 1, "DataB");
/*显示数组的首地址*/
OLED_ShowHexNum(1, 8, (uint32_t)DataA, 8);
OLED_ShowHexNum(3, 8, (uint32_t)DataB, 8);
while (1)
{
DataA[0] ++; //变换测试数据
DataA[1] ++;
DataA[2] ++;
DataA[3] ++;
OLED_ShowHexNum(2, 1, DataA[0], 2); //显示数组DataA
OLED_ShowHexNum(2, 4, DataA[1], 2);
OLED_ShowHexNum(2, 7, DataA[2], 2);
OLED_ShowHexNum(2, 10, DataA[3], 2);
OLED_ShowHexNum(4, 1, DataB[0], 2); //显示数组DataB
OLED_ShowHexNum(4, 4, DataB[1], 2);
OLED_ShowHexNum(4, 7, DataB[2], 2);
OLED_ShowHexNum(4, 10, DataB[3], 2);
Delay_ms(1000); //延时1s,观察转运前的现象
MyDMA_Transfer(); //使用DMA转运数组,从DataA转运到DataB
OLED_ShowHexNum(2, 1, DataA[0], 2); //显示数组DataA
OLED_ShowHexNum(2, 4, DataA[1], 2);
OLED_ShowHexNum(2, 7, DataA[2], 2);
OLED_ShowHexNum(2, 10, DataA[3], 2);
OLED_ShowHexNum(4, 1, DataB[0], 2); //显示数组DataB
OLED_ShowHexNum(4, 4, DataB[1], 2);
OLED_ShowHexNum(4, 7, DataB[2], 2);
OLED_ShowHexNum(4, 10, DataB[3], 2);
Delay_ms(1000); //延时1s,观察转运后的现象
}
}
DMA+AD多通道
ADC连续扫描+DMA循环转运的模式
AD.c
#include "stm32f10x.h" // Device header
uint16_t AD_Value[4]; //定义用于存放AD转换结果的全局数组
/**
* 函 数:AD初始化
* 参 数:无
* 返 回 值:无
*/
void AD_Init(void)
{
/*开启时钟*/
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); //开启ADC1的时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); //开启GPIOA的时钟
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); //开启DMA1的时钟
/*设置ADC时钟*/
RCC_ADCCLKConfig(RCC_PCLK2_Div6); //选择时钟6分频,ADCCLK = 72MHz / 6 = 12MHz
/*GPIO初始化*/
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure); //将PA0、PA1、PA2和PA3引脚初始化为模拟输入
/*规则组通道配置*/
ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_55Cycles5); //规则组序列1的位置,配置为通道0
ADC_RegularChannelConfig(ADC1, ADC_Channel_1, 2, ADC_SampleTime_55Cycles5); //规则组序列2的位置,配置为通道1
ADC_RegularChannelConfig(ADC1, ADC_Channel_2, 3, ADC_SampleTime_55Cycles5); //规则组序列3的位置,配置为通道2
ADC_RegularChannelConfig(ADC1, ADC_Channel_3, 4, ADC_SampleTime_55Cycles5); //规则组序列4的位置,配置为通道3
/*ADC初始化*/
ADC_InitTypeDef ADC_InitStructure; //定义结构体变量
ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; //模式,选择独立模式,即单独使用ADC1
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //数据对齐,选择右对齐
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; //外部触发,使用软件触发,不需要外部触发
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; //连续转换,使能,每转换一次规则组序列后立刻开始下一次转换
ADC_InitStructure.ADC_ScanConvMode = ENABLE; //扫描模式,使能,扫描规则组的序列,扫描数量由ADC_NbrOfChannel确定
ADC_InitStructure.ADC_NbrOfChannel = 4; //通道数,为4,扫描规则组的前4个通道
ADC_Init(ADC1, &ADC_InitStructure); //将结构体变量交给ADC_Init,配置ADC1
/*DMA初始化*/
DMA_InitTypeDef DMA_InitStructure; //定义结构体变量
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&ADC1->DR; //外设基地址,给定形参AddrA
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; //外设数据宽度,选择半字,对应16为的ADC数据寄存器
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; //外设地址自增,选择失能,始终以ADC数据寄存器为源
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)AD_Value; //存储器基地址,给定存放AD转换结果的全局数组AD_Value
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; //存储器数据宽度,选择半字,与源数据宽度对应
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; //存储器地址自增,选择使能,每次转运后,数组移到下一个位置
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; //数据传输方向,选择由外设到存储器,ADC数据寄存器转到数组
DMA_InitStructure.DMA_BufferSize = 4; //转运的数据大小(转运次数),与ADC通道数一致
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; //模式,选择循环模式,与ADC的连续转换一致
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; //存储器到存储器,选择失能,数据由ADC外设触发转运到存储器
DMA_InitStructure.DMA_Priority = DMA_Priority_Medium; //优先级,选择中等
DMA_Init(DMA1_Channel1, &DMA_InitStructure); //将结构体变量交给DMA_Init,配置DMA1的通道1
//ADC1的硬件触发只接在了DMA1的通道1上
/*DMA和ADC使能*/
DMA_Cmd(DMA1_Channel1, ENABLE); //DMA1的通道1使能
ADC_DMACmd(ADC1, ENABLE); //ADC1触发DMA1的信号使能
//开启ADC到DMA的输出
ADC_Cmd(ADC1, ENABLE); //ADC1使能
/*ADC校准*/
ADC_ResetCalibration(ADC1); //固定流程,内部有电路会自动执行校准
while (ADC_GetResetCalibrationStatus(ADC1) == SET);
ADC_StartCalibration(ADC1);
while (ADC_GetCalibrationStatus(ADC1) == SET);
/*ADC触发*/
ADC_SoftwareStartConvCmd(ADC1, ENABLE); //软件触发ADC开始工作,由于ADC处于连续转换模式,故触发一次后ADC就可以一直连续不断地工作
}
main.c
#include "stm32f10x.h" // Device header
#include "Delay.h"
#include "OLED.h"
#include "AD.h"
int main(void)
{
/*模块初始化*/
OLED_Init(); //OLED初始化
AD_Init(); //AD初始化
/*显示静态字符串*/
OLED_ShowString(1, 1, "AD0:");
OLED_ShowString(2, 1, "AD1:");
OLED_ShowString(3, 1, "AD2:");
OLED_ShowString(4, 1, "AD3:");
while (1)
{
OLED_ShowNum(1, 5, AD_Value[0], 4); //显示转换结果第0个数据
OLED_ShowNum(2, 5, AD_Value[1], 4); //显示转换结果第1个数据
OLED_ShowNum(3, 5, AD_Value[2], 4); //显示转换结果第2个数据
OLED_ShowNum(4, 5, AD_Value[3], 4); //显示转换结果第3个数据
Delay_ms(100); //延时100ms,手动增加一些转换的间隔时间
}
}
还可以再加定时器,ADC用单次扫描,再用定时器去定时触发,这定时器触发ADC,ADC触发DMA,硬件自动化,外设互相连接,互相交织。