采用Python+Gurobi求解带有集群回程需求的VRPCB问题
目录
- 1. 模型
- 1.1 VRPB问题介绍
- 1.2 数学模型
- 1.2.1 模型参数
- 1.2.2 数学模型
- 1.2.3 模型分解
- 2. 数据结构
- 3. Gurobi源码
- 4. 求解结果
- 参考
1. 模型
1.1 VRPB问题介绍
带有回程需求的VRP问题(VRP with Backhauls,VRPB)最初由 Deif, . Bodin, LD. 于1984年出。相关学者将其进一步细分为四类子问题:
第一类VRPCB:
-
第一类VRPB(VRPCB):
– 客户只能是linehaul客户和backhaul客户中的一类
– 车辆在访问backhaul客户集群前,必须先向linehaul客户集群交付货物
– 客户只能被访问一次 -
第二类VRPB(VRPBM)
– 不考虑客户集群限制,车辆可以交叉服务linehaul客户和backhaul客户
– 客户只能被访问一次 -
第三类VRPB(VRPPD)
– 客户可以同时是linehaul客户和backhaul客户
– 客户可以2次被访问,即:先访问几个客户交付货物,以便部分清空车辆装载。然后,再返回访问该客户提货 -
第四类VRPB(VRPPD)
– 客户可以同时是linehaul客户和backhaul客户
– 客户只能被访问一次
1.2 数学模型
这里暂时只研究VRPCB问题,借用 Toth, P., Vigo, D. 学者于1997给出的整数线性规模。
1.2.1 模型参数
1.2.2 数学模型
1.2.3 模型分解
上述模型在复现时有一定困难,尤其是 约束(6)和约束(7)中的
S
,
F
\mathcal{S, F}
S,F
这里根据 帖子(其实有一点小bug)提供的分解模型进行复现,模型如下:
2. 数据结构
原网址暂时想不起来了,回头再补。这里直接贴上代码读取的文件结构,各列依次是:节点id,节点横坐标,节点纵坐标,linehaul客户需求和backhaul客户需求
3. Gurobi源码
import copy
import csv
import math
import xlsxwriter
import matplotlib.pyplot as plt
from gurobipy import GRB,Model,quicksum
# 读取文件
def read_data(filename):
Q = {}
L = []
B = []
V = []
XY = {}
depot = None
# 读取网络节点、需求
with open(filename, 'r') as f:
node_reader = csv.DictReader(f)
for row in node_reader:
if float(row['linehaul']) == 0 and float(row['backhaul']) == 0:
depot = row['id']
Q[depot] = 0
elif float(row['linehaul']) > 0 and float(row['backhaul']) == 0:
L.append(row['id'])
Q[row['id']] = float(row['linehaul'])
elif float(row['linehaul']) == 0 and float(row['backhaul']) > 0:
B.append(row['id'])
Q[row['id']] = float(row['backhaul'])
V.append(row['id'])
XY[row['id']] = (float(row['x_coord']), float(row['y_coord']))
# 计算网络弧
L0 = L + [depot]
B0 = B + [depot]
AL = [ (i, j) for i in L0 for j in L if i != j ]
AB = [ (i, j) for i in B for j in B0 if i != j]
AC = [ (i, j) for i in L for j in B0 if i != j]
# 计算网络弧距离
Cost = {}
for i in V:
x1, y1 = XY[i][0], XY[i][0]
for j in V:
x2, y2 = XY[j][0], XY[j][0]
Cost[i,j] = math.sqrt( (x1-x2)**2 + (y1-y2)**2 )
return depot,L,L0,B,B0,AL,AB,AC,Q,Cost,XY
# 提取结果,形成车辆路径
def extract_routes(depot,L,B,B0,X,Y,Z):
L = copy.deepcopy(L)
B = copy.deepcopy(B)
B0 = copy.deepcopy(B0)
route_list = []
V = []
while len(L):
# 提取 派送阶段路径
route = [depot]
cur_node = depot
for j in L:
if X[depot, j].x > 0:
cur_node = j
route.append(j)
L.remove(j)
break
stop = True
while len(L) > 0:
for j in L:
if X[cur_node, j].x > 0:
cur_node = j
route.append(j)
if j != depot:
L.remove(j)
stop = False
break
if stop:
break
else:
stop = True
# 提取 取货阶段路径
for j in B:
if Z[cur_node,j].x > 0:
cur_node = j
route.append(j)
B0.remove(j)
break
if cur_node in B:
while cur_node != depot:
for j in B0:
if Y[cur_node, j].x > 0:
cur_node = j
route.append(j)
if j != depot:
B0.remove(j)
break
else:
route.append(depot)
route_list.append(route)
V.extend(route[1:-1])
print(len(V))
return route_list
# 绘制车辆路径
def draw_routes(route_list,XY,L,B):
for route in route_list:
path_x = []
path_y = []
for n in route:
path_x.append(XY[n][0])
path_y.append(XY[n][1])
plt.plot(path_x, path_y, linewidth=0.5, ms=5,color='black')
linehual_point_x = [XY[n][0] for n in L]
linehual_point_y = [XY[n][1] for n in L]
backhual_point_x = [XY[n][0] for n in B]
backhual_point_y = [XY[n][1] for n in B]
plt.scatter(linehual_point_x, linehual_point_y, marker='s', c='b', s=5)
plt.scatter(backhual_point_x, backhual_point_y, marker='o', c='r', s=5)
plt.show()
# 保存结果
def save_file(route_list,total_cost,Cost):
wb = xlsxwriter.Workbook('路径方案.xlsx')
ws = wb.add_worksheet()
ws.write(0,0,'总费用')
ws.write(0,1,total_cost)
ws.write(1,0,'车辆')
ws.write(1,1,'路径')
ws.write(1,2,'距离')
for row,route in enumerate(route_list):
route_str = [str(i) for i in route]
dist = sum(Cost[route[i], route[i + 1]] for i in range(len(route) - 1))
ws.write(row + 2, 0, f'{row + 1}')
ws.write(row+2,1,'-'.join(route_str))
ws.write(row + 2, 2, dist)
row += 1
wb.close()
# 建模和求解
def solve_model(depot,L,L0,B,B0,AL,AB,AC,Q,Cost,K,CAP,XY):
"""
:param depot:车场id
:param L:linehaul节点集合
:param B:backhaul节点集合
:param AL:linehaul节点衔接弧集合
:param AB:backhaul节点衔接弧集合
:param AC:linehaul节点和backhaul节点衔接弧集合
:param Q:节点需求集合
:param Cost:网络弧费用
:return:
"""
model = Model()
# 添加变量
X = model.addVars(AL,vtype=GRB.BINARY,name='X[i,j]')
Y = model.addVars(AB,vtype=GRB.BINARY,name='Y[i,j]')
Z = model.addVars(AC,vtype=GRB.BINARY,name='Z[i,j]')
U1 = model.addVars(L0,vtype=GRB.CONTINUOUS,name='U[i]')
U2 = model.addVars(B0, vtype=GRB.CONTINUOUS, name='U[i]')
# 目标函数
obj = (quicksum(X[i,j]*Cost[i,j] for i,j in AL) + quicksum(Y[i,j]*Cost[i,j] for i,j in AB) +
quicksum(Z[i,j]*Cost[i,j] for i,j in AC))
model.setObjective(obj,GRB.MINIMIZE)
# linebaul 相关约束
model.addConstr( quicksum(X[depot,j] for j in L) == K ) # 车辆数约束
model.addConstrs( (quicksum(X[i,j] for i in L0 if i != j) == 1 for j in L) ) # 派送需求约束
model.addConstrs( (U1[i] - U1[j] + CAP*X[i,j] <= CAP - Q[j] for i,j in AL) ) # 破圈约束
# backbaul 相关约束
model.addConstr( quicksum([Y[j,depot] for j in B]) + quicksum(Z[i,depot] for i in L) == K ) # 车辆数约束
model.addConstrs( (quicksum(Y[i,j] for j in B0 if i != j) == 1 for i in B) ) # 取货需求约束
model.addConstrs( (U2[i] - U2[j] + CAP*Y[i,j] <= CAP - Q[j] for i,j in AB) ) # 破圈约束
# connection 相关约束
model.addConstr( quicksum(Z[i,j] for i,j in AC) == K ) # 车辆数约束
model.addConstrs( quicksum(X[i,j] for j in L if i != j ) + quicksum(Z[i,j] for j in B0) <= 1 for i in L ) # 接续约束
model.addConstrs( quicksum(Y[i,j] for i in B if i != j) + quicksum(Z[i,j] for i in L) <= 1 for j in B) # 接续约束
# 模型求解
model.Params.TimeLimit = 300 # 规模较大时可设置求解时间限制
model.optimize()
# 判断求解状态
if model.status == GRB.Status.OPTIMAL or model.status == GRB.Status.TIME_LIMIT:
route_list = extract_routes(depot,L,B,B0,X,Y,Z)
draw_routes(route_list, XY, L, B)
save_file(route_list, model.objVal,Cost)
if __name__=='__main__':
filename=r'demand-X-n120-50-k3.csv'
depot,L,L0,B,B0,AL,AB,AC,Q,Cost, XY = read_data(filename)
solve_model(depot=depot,L=L,L0=L0,B=B,B0=B0,AL=AL,AB=AB,AC=AC,Q=Q,Cost=Cost,K=3,CAP=21,XY=XY)
4. 求解结果
参考
- https://blog.csdn.net/qq_44149045/article/details/128941919
- Koc,Cagri,Laporte,et al.Vehicle routing with backhauls: Review and research perspectives[J].Computers, 2018.
- Parragh, S.N., Doerner, K.F. & Hartl, R.F. A survey on pickup and delivery problems . Journal für Betriebswirtschaft 58, 21–51 (2008). https://doi.org/10.1007/s11301-008-0033-7