Lab 1 实验 MapReduce

news2025/1/12 21:01:54

👂 若月亮没来 (若是月亮还没来)(若是月亮还没来) - 王宇宙Leto/乔浚丞 - 单曲 - 网易云音乐

目录

🌼参考代码

🐙解析 

🐟mrsequential.go

🐟mrapps/wc.go

📕实验--准备

🎂概念

🐋思路梳理

🦖注意要点 

🐆初始代码--研读

main/mrcoordinator.go

main/mrworker.go

mr/coordinator.go

mr/worker.go

mr/rpc.go

🦈实验--开始

🐋伪代码

mr/coordinator.go

mr/worker.go

mr/rpc.go

🐎结果


🌼参考代码

🐙解析 

 实验原文要求仔细研读两份代码,并在作业过程中大胆借鉴

wc.go

  • MapReduce 的插件,实现了 Map 和 Reduce 两个函数
  • Map 函数接收输入文本的内容,分割成单词,并为每个单词生成一个键值对(键是单词,值是1)
  • Reduce 函数接收 Map 生成的所有键值对,统计每个单词出现次数,并返回这个次数

mrsequential.go

  • MapReduce 的主体,协调 Map 和 Reduce 任务的执行
  • 检查命令行参数

    os.Args[0]  // 可执行文件
    os.Args[1]  // "wc.so"(插件)
    os.Args[2]  // "pg1.txt"(输入文件)
    os.Args[3]  // "pg2.txt"
  • 加载 wc.go,执行其中的 Map 和 Reduce 函数
  • 读取输入文件内容,对每个文件调用 Map 函数
  • Map 函数的输出按键 排序输出单词
  • 排序的键值对进行 Reduce(归约)
  • Reduce 函数的输出写入输出文件统计次数

🐟mrsequential.go

代码是单线程的,输入 --> Map --> sort --> Reduce --> 输出

package main

import (
    "fmt"
    "6.824/mr"      // 引入MapReduce相关的数据结构和接口
    "plugin"       // 用于动态加载插件
    "os"           // 用于操作系统相关的功能,如命令行参数
    "log"          // 用于日志记录
    "io/ioutil"    // 用于I/O操作,如读取文件
    "sort"         // 用于排序
)

// ByKey 是一个用于按键排序的切片类型
type ByKey []mr.KeyValue

// Len 实现了 sort.Interface 接口的 Len 方法
func (a ByKey) Len() int { return len(a) }

// Swap 实现了 sort.Interface 接口的 Swap 方法
func (a ByKey) Swap(i, j int) { a[i], a[j] = a[j], a[i] }

// Less 实现了 sort.Interface 接口的 Less 方法
func (a ByKey) Less(i, j int) bool { return a[i].Key < a[j].Key }

func main() {
    // 检查命令行参数数量
    if len(os.Args) < 3 {
        fmt.Fprintf(os.Stderr, "Usage: mrsequential xxx.so inputfiles...\n")
        os.Exit(1)
    }

    // 加载插件中的 Map 和 Reduce 函数
    mapf, reducef := loadPlugin(os.Args[1])

    // 用于存储Map阶段的中间输出
    intermediate := []mr.KeyValue{}

    // 遍历所有输入文件
    for _, filename := range os.Args[2:] {
        // 打开文件
        file, err := os.Open(filename)
        if err != nil {
            log.Fatalf("cannot open %v", filename)
        }
        // 读取文件全部内容
        content, err := ioutil.ReadAll(file)
        if err != nil {
            log.Fatalf("cannot read %v", filename)
        }
        file.Close()
        // 调用 Map 函数处理文件内容
        kv := mapf(filename, string(content))
        // 将Map结果添加到中间输出
        intermediate = append(intermediate, kv...)
    }

    // 对中间输出按键排序
    sort.Sort(ByKey(intermediate))

    // 创建输出文件
    oname := "mr-out-0"
    ofile, _ := os.Create(oname)

    // 调用 Reduce 函数并写入输出文件
    i := 0
    for i < len(intermediate) {
        j := i + 1
        for j < len(intermediate) && intermediate[j].Key == intermediate[i].Key {
            j++
        }
        // 收集相同键的所有值
        values := []string{}
        for k := i; k < j; k++ {
            values = append(values, intermediate[k].Value)
        }
        // 调用 Reduce 函数
        output := reducef(intermediate[i].Key, values)
        // 按格式写入输出文件
        fmt.Fprintf(ofile, "%v %v\n", intermediate[i].Key, output)
        i = j
    }

    // 关闭输出文件
    ofile.Close()
}

// loadPlugin 从插件文件中加载 Map 和 Reduce 函数
func loadPlugin(filename string) (func(string, string) []mr.KeyValue, func(string, []string) string) {
    // 打开插件
    p, err := plugin.Open(filename)
    if err != nil {
        log.Fatalf("cannot load plugin %v", filename)
    }
    // 查找 Map 函数
    xmapf, err := p.Lookup("Map")
    if err != nil {
        log.Fatalf("cannot find Map in %v", filename)
    }
    mapf := xmapf.(func(string, string) []mr.KeyValue)
    // 查找 Reduce 函数
    xreducef, err := p.Lookup("Reduce")
    if err != nil {
        log.Fatalf("cannot find Reduce in %v", filename)
    }
    reducef := xreducef.(func(string, []string) string)
    // 返回 Map 和 Reduce 函数
    return mapf, reducef
}

🐟mrapps/wc.go

Map 函数返回键值对切片,Reduce 函数将单词出现次数转化为字符串后返回

// 定义包名为 main,这是一个插件,可以被 MapReduce 框架动态加载。
package main

// 导入 MapReduce 框架的包,用于实现 Map 和 Reduce 函数。
import "6.824/mr"
// 导入 unicode 包,用于判断字符是否为字母。
import "unicode"
// 导入 strings 包,用于字符串操作。
import "strings"
// 导入 strconv 包,用于字符串和基本数据类型之间的转换。
import "strconv"

// Map 函数是 MapReduce 框架中的第一个阶段,它将对输入文件的每一行调用一次。
// 参数 filename 是输入文件的名称,contents 是文件的全部内容。
// 这个函数返回一系列键值对,其中键是单词,值是 "1"。
func Map(filename string, contents string) []mr.KeyValue {
    // FieldsFunc 函数将根据 ff 函数来分割字符串。
    // ff 函数是一个过滤函数,它返回 true 如果字符不是字母。
    ff := func(r rune) bool { return !unicode.IsLetter(r) }

    // 使用 FieldsFunc 函数根据 ff 函数分割 contents 字符串,得到单词数组。
    words := strings.FieldsFunc(contents, ff)

    // 初始化一个空的键值对切片,用于存储 Map 函数的输出。
    kv := []mr.KeyValue{}
    for _, w := range words {
        // 对于每个单词 w,创建一个键值对,键是单词本身,值是 "1"。
        kv = append(kv, mr.KeyValue{w, "1"})
    }
    // 返回包含所有单词和计数的键值对切片。
    return kv
}

// Reduce 函数是 MapReduce 框架中的第二个阶段,它对每个唯一的键调用一次。
// 参数 key 是键,values 是所有映射任务为该键生成的值的列表。
// 这个函数返回一个字符串,表示键出现的次数。
func Reduce(key string, values []string) string {
    // 使用 strconv.Itoa 函数将 values 切片的长度(即 key 出现的次数)转换为字符串。
    return strconv.Itoa(len(values))
}

📕实验--准备

🎂概念

所谓“单机”,整个项目部署在一台机器上

所谓“集群”,集群中的每一个节点就是一个单机,每个单机运行同一个的项目,通过设置“调度者”,用户请求先发送到“调度者”,再由“调度者”根据所有节点的负载情况,分配任务,即负载均衡

从单机到集群,代码无需修改,只需多部署几台服务器

所谓 “分布式”,类似流水线(只是将串行改成了并行),每条线负责不同的功能,最终将一个个小功能,整合成一个项目

(也就是将原本部署在单机上的系统,拆分成一个个子系统,每个子系统都是独立的)

这些子系统存在依赖关系,在网络中通过 rpc(remote procedure call) 通信

🐋思路梳理

wc.go 是一个实现了 Map 和 Reduce 函数的插件

而 mrsequential.go 是 MapReduce 的顺序实现

(可以理解为“单机”实现,一台机器,单个进程,顺序执行)

我们要做的就是,将 mrsequential.go 拆分成 5 个文件,实现 MapReduce(词频统计) 的分布式部署 / 并行执行

main(程序入口)

  • main/mrcoordinator.go  协调者初始化
  • main/mrworker.go  工作者初始化

两个 main 文件不用修改,我们只需完成以下 3 个 mr/.... 文件即可 

mr(具体实现)

  • mr/coordinator.go  实现协调者(监视 worker,分配任务,处理失败,重新分配)
  • mr/worker.go  实现工作者(请求任务,执行 Map,执行 Reduce,写入中间结果,写入最终结果)
  • mr/rpc.go  协调者 与 工作者 间的远程调用 (定义了通信接口和数据结构)

🦖注意要点 

  •  修改 mr/ 下任何文件后,需要重新构建插件 wc.go,确保插件不依赖旧版本
go build -race -buildmode=plugin ../mrapps/wc.go
  • 修改 mr/worker.go 中的 Worker() 函数,通过 RPC 请求 coordinator 分配任务
  • 中间文件命名 mr-X-Y(X 为 Map 任务编号,Y 为 Reduce 任务编号)
  • 使用 Go 的 encoding/json 包写入和读取 JSON 文件
enc := json.NewEncoder(file) // json.Encoder实例,编码为 json 格式
for _, kv := ... {
    err := enc.Encode(&kv)
dec := json.NewDecoder(file) // json.Decoder 实例,解码为 json 格式
for {
    var kv KeyValue
    if err := dec.Decode(&kv); err != nil {
        break
    }
    kva = append(kva, kv)
}
  • 使用 mrapps/crash.go 插件测试崩溃恢复
go build -race -buildmode=plugin crash.go // 编译插件文件
go run -race mrcoordinator.go pg-*.txt // 根据输入文件,启动 MapReduce 作业
go run -race mrworker.go crash.so // 运行 worker 进程,使用插件故意崩溃
  • 为防止崩溃时部分写入,用 ioutil.TempFile 创建临时文件,os.Rename 原子地重命名

🐆初始代码--研读

初始代码可以先抄一遍,理解一下,捋清楚思路后,再开始做 

main/mrcoordinator.go

创建协调者,通过命令行参数,传递输入文件给工作者,并在作业完成后退出程序

// 程序入口点
package main

// 引入 MapReduce 包,包含协调者和工作者的实现
import "6.824/mr"
// time 包,暂停时间
import "time"
// 引入 os 包,读取命令行参数。
import "os"
// 格式化输入输出
import "fmt"

func main() {
    // 访问命令行参数,至少读取一个文件,第一个参数是程序名本身
    if len(os.Args) < 2 {
        // 如果参数数量小于2,打印到标准错误
        fmt.Fprintf(os.Stderr, "Usage: mrcoordinator inputfiles...\n")
        os.Exit(1)
    }

    // 创建协调者实例,除了程序名,剩下的参数作为输入文件传递
    m := mr.MakeCoordinator(os.Args[1:], 10) // 10 个工作者
    // 循环直到 MapReduce 作业完成
    for m.Done() == false { // m.Done() 检查 mr 作业是否完成
        // time.Sleep 暂停一秒
        time.Sleep(time.Second)
    }

    // 作业完成后,再等待一秒钟,可能是为了确保所有输出都已经写入
    time.Sleep(time.Second)
}

main/mrworker.go

从命令行参数中,获取插件文件,并将插件文件中的 Map 和 Reduce 函数,转化为具体函数类型(便于后续调用)

因为接口类型本身,不能直接被调用,需要转化为具体类型

package main

import (
    "6.824/mr"
    "plugin"
    "os"
    "fmt"
    "log"
)

// main 是程序的入口点,当程序启动时最先执行的函数
func main() {
    // 参数1:程序名  参数2:插件文件路径
    if len(os.Args) != 2 {
        // 写入标准错误流
        fmt.Fprintf(os.Stderr, "Usage: mrworker xxx.so\n")
        // 终止程序,并返回状态码 1 表示错误
        os.Exit(1)
    }

    // 调用 loadPlugin 函数加载 Map 和 Reduce 函数
    // Map, Reduce 函数,都来自于插件文件
    // mapf 是 Map 函数,reducef 是 Reduce 函数
    mapf, reducef := loadPlugin(os.Args[1])

    // 调用 mr.Worker 启动 MapReduce 工作者进程,传入加载的 Map 和 Reduce 函数
    mr.Worker(mapf, reducef)
}

// loadPlugin 函数用于从插件文件中加载 Map 和 Reduce 函数
// filename 插件文件的路径
func loadPlugin(filename string) (func(string, string) []mr.KeyValue, func(string, []string) string) {
    // 使用 plugin.Open 函数打开插件文件,返回插件对象实例 p 和可能发生的错误 err
    // p 包含 Map 和 Reduce 函数
    p, err := plugin.Open(filename)

    if err != nil {
        log.Fatalf("cannot load plugin: %v", filename)
    }

    // p.Lookup 方法查找插件中名为 "Map" 的导出符号,其实就是 Map 函数
    // xmapf 是一个 plugin.Symbol 类型的变量,用于存储从插件中查找到的 Map 函数符号
    // plugin.Symbol 是一个接口类型,代表插件中的任意导出符号
    xmapf, err := p.Lookup("Map")
    if err != nil {
        log.Fatalf("cannot find Map function in plugin: %v", filename)
    }

    // 类型断言用于确定 xmapf 中存储的具体函数类型
    // 并将其从 plugin.Symbol 接口类型断言回其静态的函数类型
    // xmapf.() 就是类型断言, 将 plugin.Symbol 转化为具体函数类型
    mapf := xmapf.(func(string, string) []mr.KeyValue)

    // 同上,查找并断言 Reduce 函数
    xreducef, err := p.Lookup("Reduce")
    if err != nil {
        log.Fatalf("cannot find Reduce function in plugin: %v", filename)
    }
    reducef := xreducef.(func(string, []string) string)

    // 返回加载并断言成功的 Map 和 Reduce 函数
    return mapf, reducef
}

mr/coordinator.go

struct Coordinator:分配 MapReduce 任务到对应 worker

Example():rpc 处理函数的例子

server():启动 rpc 服务,监听来自 worker 的请求

Done():检查 MapReduce 作业是否完成

MakeCoordinator():创建并初始化 Coordinator 实例

package mr

import (
    "log"
    "net"
    "os"
    "net/rpc"
    "net/http"
)

// Coordinator 负责管理和分配任务
type Coordinator struct {
    // Your definitions here.
}

// RPC handlers for the worker to call.
// an example RPC handler.
// the RPC argument and reply types are defined in rpc.go
// rpc 调用的参数和返回值,在 rpc.go 中定义
func (c *Coordinator) Example(args *ExampleArgs, reply *ExampleReply) error {
    reply.Y = args.X + 1
    return nil // rpc 调用成功
}

// start a thread that listens for RPCs from worker.go
func (c *Coordinator) server() {
    // 注册协调者实例,处理 RPC 调用
    rpc.Register(c)
    // 允许使用 HTTP 协议进行 RPC 通信
    rpc.HandleHTTP()
    // 协调者 socket 文件名
    sockname := coordinatorSock()
    // 监听前移除已存在的 socket 文件,避免监听失败
    os.Remove(sockname)
    // 监听 UNIX socket,准备接收来自 worker 的连接
    l, e := net.Listen("unix", sockname)
    if e != nil {
        log.Fatal("listen error:", e)
    }
    // 新的 goroutine 中启动 HTTP 服务,以处理 RPC 请求
    go http.Serve(l, nil)
}

// main/mrcoordinator.go 会定期调用 Done() 函数来检查整个作业是否已完成。
func (c *Coordinator) Done() bool {
    ret := false

    // Your code here to implement the check for completion of all tasks
    // 在这里实现检查所有任务是否完成的逻辑,例如检查所有 Map 和 Reduce 任务的状态


    return ret // 作业是否完成
}

// create a Coordinator
// main/mrcoordinator.go calls this function
// nReduce is the number of reduce tasks to use.
// The returned value is a pointer to the newly created Coordinator instance.
func MakeCoordinator(files []string, nReduce int) *Coordinator {
    c := Coordinator{}

    // Your code here to initialize the Coordinator, e.g., load input files, setup tasks, etc


    // 启动 RPC 服务器线程,以便监听和处理来自 worker 的 RPC 请求
    c.server()
    // 返回指向新创建的协调者实例的指针,这样调用者就可以通过这个指针来访问和操作协调者实例
    return &c
}

mr/worker.go

KeyValue 结构体

ihash():返回 reduce 任务编号(用于发送 Map 输出的数据)

Worker():调用插件中的 map() 和 reduce() 函数

CallExample():展示 rpc 调用的完整流程,需要借助 call()

call():建立 rpc 连接,再发送 rpc 请求

// package mr - 定义了MapReduce作业的工作者包,包含实现MapReduce算法所需的结构和函数

// import语句 - 日志记录、rpc远程过程调用、哈希计算

package mr

import (
    "fmt"
    "log"
    "net/rpc"
    "hash/fnv"
)

// 定义 MapReduce 中的键值对
type KeyValue struct {
    Key   string
    Value string
}

// 自定义的哈希函数,用于确定Map输出的键值对,应该发送到哪个Reduce任务
// Map阶段输出的键分配到不同的Reduce任务
func ihash(key string) int {
    h := fnv.New32a() // 创建FNV-1a哈希生成器
    // 字符串 key 转为 []byte 字节切片,因为 Wirte() 需要操作字节数据
    h.Write([]byte(key)) // 将键的字节序列写入哈希生成器
    // 使用按位与操作确保结果是一个非负整数,适合作为索引使用
    // 0x7fffffff 就是 0111 1111 ... 1111,符号位为正,其他不变
    return int(h.Sum32() & 0x7fffffff)
}

// Worker 函数 - 是MapReduce工作者的主要工作函数
// 它调用用户提供的map和reduce函数
// main/mrworker.go calls this function.
// 传入的两个参数是 mapf() 和 reducef()
func Worker(mapf func(string, string) []KeyValue, 
            reducef func(string, []string) string) {
    // 工作者实现细节将在这里编写,包括从协调者接收任务和发送结果
}


// example function to show how to make an RPC call to the coordinator.
func CallExample() {
    // {X: 99} 结构体字面量, X 初始化为 99
    args := ExampleArgs{X: 99} // rpc通信中传递的参数
    reply := ExampleReply{}  // 用于存储响应的返回值
    // 发送RPC请求到协调者,等待回复
    // 服务名称.方法名称,rpc包会根据这个字符串,找到对应的服务和方法进行调用
    call("Coordinator.Example", &args, &reply)
    fmt.Printf("reply.Y %v\n", reply.Y) 
}

// send an RPC request to the coordinator, wait for the response.
func call(rpcname string, args interface{}, reply interface{}) bool {
    sockname := coordinatorSock() // 获取协调者socket名称
    c, err := rpc.DialHTTP("unix", sockname) // 建立RPC连接
    if err != nil {
        log.Fatal("dialing:", err)
    }
    defer c.Close()
    // Call 方法是 net/rpc 包中的 *rpc.Client 类型的一个实例方法
    err = c.Call(rpcname, args, reply) // 发送RPC请求
    if err == nil {
        return true
    }
    fmt.Println(err)
    return false
}

mr/rpc.go

ExampleArgs 和 ExampleReply,表示 rpc 参数和 rpc 返回值两种类型

coordinatorSock():为协调者生成 socket 文件名

package mr

// RPC definitions
// remember to capitalize(大写) all names

import "os"  // 操作系统功能,获取用户ID
import "strconv"  // 字符串转换

// example to show how to declare the arguments(参数)
// and reply(返回值) for an RPC

type ExampleArgs struct {
    X int 
}

type ExampleReply struct {
    Y int 
}

// Add your RPC definitions here



// Cook up a unique-ish UNIX-domain socket name
// in /var/tmp, for the coordinator

// Can't use the current directory since
// Athena AFS doesn't support UNIX-domain sockets.

// 这里指定的是一个UNIX域socket的文件路径前缀,它位于/var/tmp目录下
// 并且以"824-mr-"作为前缀,以确保socket文件名的唯一性
// 用于获取协调者的socket文件名,以便建立RPC连接
func coordinatorSock() string {
    // 定义UNIX域socket的基础路径,前缀为"/var/tmp/824-mr-"
    s := "/var/tmp/824-mr-"  
    // 将当前用户的UID转换为字符串并追加到基础路径之后,创建一个唯一的socket文件名
    s += strconv.Itoa(os.Getuid())  
    return s  // 协调者监听的socket文件的路径
}

🦈实验--开始

没写完,不小心发布了,稍等

🐋伪代码

mr/coordinator.go

mr/worker.go

.

mr/rpc.go

.

🐎结果

。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2038619.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux---02---系统目录及文件基本操作命令

课程回顾 操作系统 虚拟机安装 本章重点 Linux系统目录结构 常用命令 熟练区分Linux下各层目录的作用 熟练掌握Linux的常用命令&#xff08;文件命令、时间命令等&#xff09; 一、Linux系统目录结构 1.1 目录结构 /&#xff1a; 根目录&#xff0c;一般根目录下只存放…

KEEPALIVED是什么?以及实现各功能的配置实验

一、高可用集群KEEPALIVED 1.1 KEEPALIVED的出现 LVS ---> HAProxy ---> KEEPALIVED LVS&#xff1a; LVS&#xff1a;四层调度&#xff0c;IP地址&#xff0c;mac地址以及端口对后端进行调度。优点&#xff1a;速度快&#xff0c;对 LVS 的性能要求比较低。缺点&…

离职保密协议是什么?怎么样才是合法的?如何维护公司权益?

“商贾之道&#xff0c;在于诚信&#xff1b;机密之重&#xff0c;犹胜千金。” 在历史的长河中&#xff0c;商业机密一直是商家兴衰成败的关键。 时至今日&#xff0c;随着科技的飞速发展&#xff0c;信息时代的浪潮更是将商业秘密的保护推向了新的高度。 离职保密协议&…

前端(HTML + CSS)小兔鲜儿项目(仿)

前言 这是一个简单的商城网站&#xff0c;代码部分为HTML CSS 和少量JS代码 项目总览 一、头部区域 头部的 购物车 和 手机 用的是 文字图标&#xff0c;所以效果可以和文字一样 购物车右上角用的是绝对定位 logo用的是 h1 标签&#xff0c;用来提高网站搜索排名 二、banne…

简单的class.getResource与classLoader.getResource区别

简单的getClass().getResource()与ClassLoader.getResource()区别 1.简介 我们在springboot项目中&#xff0c;如果要获取到自己配置的资源或者配置类信息一般会用到Class.getResource()或ClassLoader.getResource()&#xff0c;这两种方式在使用的过程中很容易混淆&#xff…

echarts格式化图例回调函数返回对象

使用返回的对象可以自定义图例显示 formatter:function(obj){var label obj.seriesName "<br/>" obj.marker obj.name ":" obj.value "宗" "<br/>" "占比" obj.percent "%";return label…

四川大型数字媒体产业园区在哪里,有推荐吗?

四川省作为中国西南地区的经济和文化重镇&#xff0c;数字媒体产业的发展取得了令人瞩目的成绩。以下是四川省排名前十的数字媒体产业园&#xff0c;这些园区在推动科技创新和区域经济发展方面发挥了重要作用。 1、 国际数字影像产业园 位置&#xff1a;成都市金牛区 特点&…

触摸屏接口设置-洋桃百科

触摸屏接口设置-洋桃百科 电路设计 ​​ 触摸屏的组成&#xff1a; PCB板层&#xff1a;是电子设备中用于支撑和连接电子元件的基板。 显示层&#xff1a;是LCD触摸屏的核心部分&#xff0c;负责生成视觉图像。它由以下部分组成&#xff1a; 液晶层&#xff1a;包含液晶材料…

框架盛行,还记得原生JS如何获取表单数据吗?

你好同学&#xff0c;我是沐爸&#xff0c;欢迎点赞、收藏和关注&#xff01;个人知乎 在这个前端框架遍地开花的时代&#xff0c;同学们常常被React、Vue、Angular等现代JavaScript框架的便捷性和高效性所吸引。那么多年过去&#xff0c;你还记得原生JS是如何获取表单数据的吗…

论文分享|MLLMs中多种模态(图像/视频/音频/语音)的tokenizer梳理

本文旨在对任意模态输入-任意模态输出 (X2X) 的LLM的编解码方式进行简单梳理&#xff0c;同时总结一些代表性工作。 注&#xff1a;图像代表Image&#xff0c;视频代表Video&#xff08;不含声音&#xff09;&#xff0c;音频代表 Audio/Music&#xff0c;语音代表Speech 各种…

docker数据卷和资源控制

目录 数据卷 实现数据卷 宿主机和容器之间进行数据共享 容器与容器之间进行数据共享 容器互联 docker容器的资源控制 cpu 1.设置cpu资源控制&#xff08;比重&#xff09; 2. 设置cpu的资源占用比&#xff08;权重&#xff09; 3.设置容器绑定cpu 内存 1.内存限制 …

Docker搭建Minio容器

Docker搭建Minio容器 前言 在上一集我们介绍了分布式文件存储行业解决方案以及技术选型。最终我们决定选用Minio作为分布式文件存储。 那么这集我们就在Docker上搭建Minio容器即可。 Docker搭建Minio容器步骤 创建Minio文件目录 我们选择创建/minio/data目录 修改目录权…

系统编程 day11 进程(线程)3

fork函数的总结&#xff1a; 总结对进程学习之中的回收函数wait wait函数&#xff1a; 1.获取子进程的退出状态 2.回收资源------会让僵尸态的子进程销毁 注&#xff1a;1.wait函数本身是一个阻塞操作&#xff0c;会使调用者阻塞 2.父进程要获得子进程的退出状态 子进程&…

解决STM32G474单片机_HAL_UART_Transmit_IT()连续发送之问题

在使用STM32G474单片机的HAL库时&#xff0c;使用“在中断服务程序中发送数据”和“在中断程序中接收数据”&#xff0c;是一种很常用的方法&#xff0c;特别是RS485通讯中。首次使用&#xff0c;肯定会踩坑。要么出现第一个数据收不到&#xff0c;要么出现连续发送&#xff0c…

米联客-FPGA程序设计Verilog语法入门篇连载-02 Verilog语法_基本设计方法

软件版本&#xff1a;无 操作系统&#xff1a;WIN10 64bit 硬件平台&#xff1a;适用所有系列FPGA 板卡获取平台&#xff1a;https://milianke.tmall.com/ 登录“米联客”FPGA社区 http://www.uisrc.com 视频课程、答疑解惑&#xff01; 1概述 本节主要讲解Verilog的基本设…

【屏驱MCU】增加自定义分区指南

说明&#xff1a;本文主要给出基于该款 点屏 MCU。增加自定义分区指南 屏驱MCU系列文章 【屏显MCU】多媒体接口总结&#xff08;一&#xff09; 【DVP接口】0v5640的DVP接口设计分析&#xff08;硬件&#xff09; 【DVP接口】0v5640的DVP接口设计分析&#xff08;软件&#xff…

CCF-GESP8级考试—图论算法及综合应用(最小生成树)

&#x1f349;1 最小生成树的概念 1.1 连通图 &#x1f388; 连通图用于描述图中顶点之间是否存在路径相连。一个无向图中&#xff0c;如果从图中的任意一个顶点出发&#xff0c;都可以通过边的连接到达图中的任意其他顶点&#xff0c;则该图被称为连通图。 连通图的性质&…

为何众多卖家都选择入驻亚马逊VC?有什么优势?——WAYLI威利跨境助力商家

众多卖家选择入驻亚马逊VC&#xff08;Vendor Central&#xff09;&#xff0c;主要是因为VC平台为卖家提供了一系列显著的优势。VC使卖家与亚马逊建立直接供应关系&#xff0c;提升曝光率和销售机会。作为全球领先电商平台&#xff0c;亚马逊拥有庞大用户群和完善物流体系&…

C#窗体自定义快捷操作键的实现 - 开源研究系列文章

这次想到应用程序的窗体的快捷操作键的使用的问题。 上次发布过一个快捷键的例子(https://www.cnblogs.com/lzhdim/p/18342051)&#xff0c;区别在于它是操作系统全局注册的热键&#xff0c;如果其它应用程序注册了对应的热键&#xff0c;那就会失效。此例子是对某个窗体里的按…

AI驱动人才社区革新:智能化探索与实践

一、引言&#xff1a;AI赋能人才新生态 在21世纪的数字化浪潮中&#xff0c;人工智能&#xff08;AI&#xff09;技术以其强大的数据处理能力、学习优化算法及创新应用模式&#xff0c;正深刻地改变着各行各业的面貌&#xff0c;人才管理领域亦不例外。传统的人才社区&#xf…