听的是B站UP主唐小谦的解析几何课,万年的老计算机专业人也想学数学OWO。
1. 课程介绍与要求
前面都是老师的课程介绍,从板书证明开始记
【证明】在三角形ABC中,D为BC边的中点,证明:
∠
ABC
=
9
0
∘
\angle \text{ABC}=90^{\circ}
∠ABC=90∘的充要条件是
AD
=
1
2
BC
\text{AD}=\frac{1}{2}\text{BC}
AD=21BC.
【证】先证充分性,
因为D为BC边的中点,所以BD=DC,
因为
AD
=
1
2
BC
\text{AD}=\frac{1}{2}\text{BC}
AD=21BC,所以
AD
=
BD
=
DC
\text{AD}=\text{BD}=\text{DC}
AD=BD=DC
所以三角形ADB和三角形ADC是等腰三角形
所以
∠
DBA
=
∠
DAB
\angle \text{DBA}=\angle \text{DAB}
∠DBA=∠DAB,
∠
DCA
=
∠
DAC
\angle \text{DCA}=\angle \text{DAC}
∠DCA=∠DAC
故
∠
BAC
=
∠
DAB
+
∠
DAC
=
∠
DBA
+
∠
DCA
\angle \text{BAC}=\angle \text{DAB}+\angle \text{DAC}=\angle \text{DBA}+\angle \text{DCA}
∠BAC=∠DAB+∠DAC=∠DBA+∠DCA
由于
∠
BAC
+
∠
DBA
+
∠
DCA
=
2
(
∠
DBA
+
∠
DCA
)
=
18
0
∘
\angle \text{BAC}+\angle \text{DBA}+\angle \text{DCA}=2(\angle \text{DBA}+\angle \text{DCA})=180^{\circ}
∠BAC+∠DBA+∠DCA=2(∠DBA+∠DCA)=180∘
所以
∠
DBA
+
∠
DCA
=
∠
BAC
=
9
0
∘
\angle \text{DBA}+\angle \text{DCA}=\angle \text{BAC}=90^{\circ}
∠DBA+∠DCA=∠BAC=90∘
再证必要性(已知:
∠
BAC
=
9
0
∘
\angle \text{BAC}=90^{\circ}
∠BAC=90∘)
以D点为原点,以向量
B
C
⃗
\vec{BC}
BC方向为
x
x
x轴正方向,以垂直于BC边向上的方向为
y
y
y轴正方向建立如下坐标系:
则三角形中各点坐标分别为
A
(
x
,
y
)
,
B
(
−
R
,
0
)
,
D
(
0
,
0
)
,
C
(
R
,
0
)
\text{A}(x,y),\text{B}(-R,0),\text{D}(0,0),\text{C}(R,0)
A(x,y),B(−R,0),D(0,0),C(R,0)
由于
∠
BAC
=
9
0
∘
\angle \text{BAC}=90^{\circ}
∠BAC=90∘,且
A
B
⃗
=
(
x
+
R
,
y
)
,
A
C
⃗
=
(
x
−
R
,
y
)
\vec{AB}=(x+R,y),\vec{AC}=(x-R,y)
AB=(x+R,y),AC=(x−R,y)
则
A
B
⃗
⋅
A
C
⃗
=
0
\vec{AB}\cdot \vec{AC}=0
AB⋅AC=0,即
(
x
+
R
)
(
x
−
R
)
+
y
2
=
0
(x+R)(x-R)+y^{2}=0
(x+R)(x−R)+y2=0
亦即
x
2
+
y
2
=
R
2
x^{2}+y^{2}=R^{2}
x2+y2=R2
说明点A在以点D为圆心,半径为
R
R
R的圆上
则
AD
=
BD
=
BC
=
R
\text{AD}=\text{BD}=\text{BC}=R
AD=BD=BC=R
又因为
BC
=
2
R
\text{BC}=2R
BC=2R
则
AD
=
1
2
BC
\text{AD}=\frac{1}{2}\text{BC}
AD=21BC