stm32入门学习13-时钟RTC

news2024/11/15 22:46:56

(一)时钟RTC

stm32内部集成了一个秒计数器RTC,用于显示我们日常的时间,如日期年月日,时分秒等,RTC的主要原理就是进行每秒自增,如果我们知道开始记秒的开始时间,就可以计算现在的日期,但是这不需要我们计算,我们只要调用C语言库函数即可自动完成秒数到日常时间或日常时间到秒数的转换,如果只是实现秒自增的功能,那么内部任何一个计数器都可以实现,但是时钟RTC与其他计数器不同的是其可以使用备用电源保持工作,在最小板供电停止时如果有备用电源其会继续工作;这里的备用电源供电引脚为stm32最小板的1好引脚,标注为VBT;

(二)备份寄存器BKP

和时钟RTC一样,备份寄存器BKP可以在备用电源供电时保持数据不丢失,但是其却不能在备用电源和主电源同时断电时候还保持掉电不丢失,这里使用BKP主要是为了给时钟判断是否需要初始化,如果备用电源没有断开,RTC依旧在工作,那么在主电源重新供电的时候时钟就不需要初始化,直接读取其时钟值即可;

(三)RTC时钟和BKP备份寄存器

这里BKP主要是为了检测备用电源是否掉电的,我们的思路是在上电的时候在备份寄存器BKP上写入一个数据(不要写默认值0),如果备用电源没有断电,这个数据会一直保持,如果断电则会恢复为0,我们只要会初始化BKP和读写BKP即可,主要用到这几个函数

void BKP_WriteBackupRegister(uint16_t BKP_DR, uint16_t Data);
// 写入备份寄存器

uint16_t BKP_ReadBackupRegister(uint16_t BKP_DR);
// 读出备份寄存器

void RTC_WaitForLastTask(void);
// 等待上次任务完成,内部自带while循环和进入RTC的配置模式

void RTC_WaitForSynchro(void);
// 等待系统同步,自带while循环和进入RTC的配置模式

(1)BKP初始化

BKP初始化要初始BKP的时钟,还有电源管理模块的时钟RCC_APB1Periph_PWR,以便在使用备用电源时stm32可以进行电源管理进入待机模式,这些时钟都是APB1上的外设,因此我们要调动APB1的初始化函数

void rtc_bkp_init()
{
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_BKP, ENABLE);
}

(2)RTC初始化

RTC不想其他外设一样用初始化结构体来进行初始化,我们要对每一步手动初始化,初始化流程图如下

首先要开启RTC的时钟并选择对应通道,然后要写入重装寄存器和预分频值以使得计数器实现每秒自增(即频率为1Hz),当然我们还要打开对应的电源控制

如果在主电源断开但备用电源没有断开时,RTC仍然会工作,但是主电源开始供电时,程序会重启,这时会再次调用RTC的初始化函数,这时不希望的,因此我们在BKP中写入一个标志位,如果该标志位没有清零,表示备用电源和主电源没有同时断电,这时我们就不需要重新对RTC进行初始化,我们在RTC初始化中加入if判断即可

void rtc_init()
{
	PWR_BackupAccessCmd(ENABLE);
	
	if (BKP_ReadBackupRegister(BKP_DR1) != 1)
	{
		RCC_LSEConfig(RCC_LSE_ON);
		while (RCC_GetFlagStatus(RCC_FLAG_LSERDY) != SET);
		
		RCC_RTCCLKConfig(RCC_RTCCLKSource_LSE);
		RCC_RTCCLKCmd(ENABLE);
		
		RTC_WaitForSynchro();	// wait synchronization
		RTC_WaitForLastTask();	// wait write
		
		RTC_SetPrescaler(32768-1);
		RTC_WaitForLastTask();
		
		rtc_set_time(2024, 8, 9, 16, 7, 0);
	
		BKP_WriteBackupRegister(BKP_DR1, 1);
	}
}

由于RTC的时钟和系统时钟不是一个频率,在开启时钟后要等待时钟同步(synchronization),每次进行写操作时要等待上次任务完成;

这里选择的是外部低速时钟,其晶振为32.768KHz,因此要进行32768分频使其频率为1Hz

(3)设置和读取时间

我们可以从该时钟读取到的只有秒值,且要修改时间也只有输入对应时间的秒数才能修改,但是我们可以借助time库来计算我们常见的时间格式和对应秒数的转换,主要有两个函数和一个结构体

struct tm {
    int tm_sec;   /* seconds after the minute, 0 to 60
                     (0 - 60 allows for the occasional leap second) */
    int tm_min;   /* minutes after the hour, 0 to 59 */
    int tm_hour;  /* hours since midnight, 0 to 23 */
    int tm_mday;  /* day of the month, 1 to 31 */
    int tm_mon;   /* months since January, 0 to 11 */
    int tm_year;  /* years since 1900 */
    int tm_wday;  /* days since Sunday, 0 to 6 */
    int tm_yday;  /* days since January 1, 0 to 365 */
    int tm_isdst; /* Daylight Savings Time flag */
    union {       /* ABI-required extra fields, in a variety of types */
        struct {
            int __extra_1, __extra_2;
        };
        struct {
            long __extra_1_long, __extra_2_long;
        };
        struct {
            char *__extra_1_cptr, *__extra_2_cptr;
        };
        struct {
            void *__extra_1_vptr, *__extra_2_vptr;
        };
    };
};
// 时间结构体,对应秒、分、时、日、月、年、星期、天

extern _ARMABI time_t mktime(struct tm * /*timeptr*/) __attribute__((__nonnull__(1)));
// 将时间结构体转换为秒数,输入一个时间结构体指针输出其到1990年的秒数,结构体只要年月日即可

extern _ARMABI struct tm *localtime(const time_t * /*timer*/) __attribute__((__nonnull__(1)));
// 输入到1990年的秒数输出一个时间结构体指针

这里有一些规定与日常不合,这里的月是从0开始的,年是如今到1900年的年数,星期从星期天(0)开始

这里转换的是伦敦时间,要计算北京时间还要加上8小时(东八区),对应秒数加8*60*60

void rtc_set_time(unsigned int year, unsigned int month, unsigned int day, unsigned int hour, unsigned int min, unsigned int sec)
{
	struct tm timer;
	unsigned int counter;
	timer.tm_year = year-1900;
	timer.tm_mon = month-1;
	timer.tm_mday = day;
	timer.tm_hour = hour;
	timer.tm_min = min;
	timer.tm_sec = sec;
	counter = mktime(&timer);
	counter -= 8*60*60;
	RTC_SetCounter(counter);
	RTC_WaitForLastTask();
}
struct tm* rtc_read_time()
{
	struct tm* timer;
	unsigned int counter = RTC_GetCounter() + 8*60*60;
	timer = localtime(&counter);
	timer->tm_year += 1900;
	timer->tm_mon += 1;
	return timer;
}

(4)封装与声明

最终.c 和 .h文件如下

#include "stm32f10x.h"                  // Device header
#include <time.h>

void rtc_set_time(unsigned int year, unsigned int month, unsigned int day, unsigned int hour, unsigned int min, unsigned int sec);

void rtc_bkp_init()
{
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_BKP, ENABLE);
}

void rtc_init()
{
	PWR_BackupAccessCmd(ENABLE);
	
	if (BKP_ReadBackupRegister(BKP_DR1) != 1)
	{
		RCC_LSEConfig(RCC_LSE_ON);
		while (RCC_GetFlagStatus(RCC_FLAG_LSERDY) != SET);
		
		RCC_RTCCLKConfig(RCC_RTCCLKSource_LSE);
		RCC_RTCCLKCmd(ENABLE);
		
		RTC_WaitForSynchro();	// wait synchronization
		RTC_WaitForLastTask();	// wait write
		
		RTC_SetPrescaler(32768-1);
		RTC_WaitForLastTask();
		
		rtc_set_time(2024, 8, 9, 16, 7, 0);
	
		BKP_WriteBackupRegister(BKP_DR1, 1);
	}
}

void rtc_set_time(unsigned int year, unsigned int month, unsigned int day, unsigned int hour, unsigned int min, unsigned int sec)
{
	struct tm timer;
	unsigned int counter;
	timer.tm_year = year-1900;
	timer.tm_mon = month-1;
	timer.tm_mday = day;
	timer.tm_hour = hour;
	timer.tm_min = min;
	timer.tm_sec = sec;
	counter = mktime(&timer);
	counter -= 8*60*60;
	RTC_SetCounter(counter);
	RTC_WaitForLastTask();
}

struct tm* rtc_read_time()
{
	struct tm* timer;
	unsigned int counter = RTC_GetCounter() + 8*60*60;
	timer = localtime(&counter);
	timer->tm_year += 1900;
	timer->tm_mon += 1;
	return timer;
}
#ifndef __RTC_H__
#define __RTC_H__

void rtc_bkp_init(void);
void rtc_init(void);
void rtc_set_time(unsigned int year, unsigned int mon, unsigned int day, unsigned int hour, unsigned int min, unsigned int sec);
struct tm* rtc_read_time(void);

#endif

(四)主函数

只要在主函数进行对应初始化和调用读取函数即可,初始化已经包含了开始时间的设定,如果要重新设定开始时间,可以在初始化中更改,也可以在主函数中使用rtc_set_time函数来修改,但是要注意上电后stm32复位问题,应该和初始化一样加入备用电源是否断电的判断代码

#include "stm32f10x.h"                  // Device header
#include "rtc.h"
#include "OLED.h"
#include <time.h>

int main()
{
	struct tm* time_inf;
	OLED_Init();
	rtc_bkp_init();
	rtc_init();
	OLED_ShowString(1, 1, "time:");
	OLED_ShowString(2, 1, "xxxx-xx-xx");
	OLED_ShowString(3, 1, "xx:xx:xx");
	while(1)
	{
		time_inf = rtc_read_time();
		OLED_ShowNum(2, 1, time_inf->tm_year, 4);
		OLED_ShowNum(2, 6, time_inf->tm_mon, 2);
		OLED_ShowNum(2, 9, time_inf->tm_mday, 2);
		OLED_ShowNum(3, 1, time_inf->tm_hour, 2);
		OLED_ShowNum(3, 4, time_inf->tm_min, 2);
		OLED_ShowNum(3, 7, time_inf->tm_sec, 2);
	}
	return 0;
}

(五)总结

通过实现一个时钟,我们学习了RTC和BKP两个可以使用备用电源供电工作的外设,了解了计数器RTC的原理和备份寄存器BKP的原理,通过备份寄存器实现了RTC的掉电继续计时和数据不丢失

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2033944.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Redis操作--RedisTemplate(二)StringRedisTemplate

一、介绍 1、简介 由于存储在 Redis 中的 key 和 value 通常是很常见的 String 类型&#xff0c;Redis模块提供了 RedisConnection 和 RedisTemplate 的扩展&#xff0c;分是 StringRedisConnection 和 StringRedisTemplate&#xff0c;作为字符串操作的解决方案。 通过源码…

JVM二:JVM类加载机制

目录 前言 1.什么是类加载? 2.类加载整体流程 3.一个类什么时候被加载? 4.双亲委派模型 4.1 JVM默认提供了三个类加载器 4.1.1 BootstrapClassLoader 4.1.2 ExtensionClassLoader 4.1.3 ApplicationClassLoader 4.2 破坏双亲委派模型 前言 在上一篇文章中&#xf…

江科大/江协科技 STM32学习笔记P21

文章目录 ADC模数转换器ADC简介逐次逼近型ADCSTM32的ADCADC基本结构输入通道转换模式单次转换&#xff0c;非扫描模式连续转换&#xff0c;非扫描模式单次转换&#xff0c;扫描模式连续转换&#xff0c;扫描模式 触发控制数据对齐转换时间校准硬件电路电位器产生可调电压的电路…

Python图像背景去除

目录 &#x1f381;库的导入 &#x1f380;库的安装 &#x1f381;rembg库去除背景 &#x1f381;效果 &#x1f381;文末彩蛋 今天来介绍一个特别有趣的python库&#xff0c;rembg库&#xff0c;全称是“Remove Background”的缩写&#xff0c;意为“去除背景”&#xff…

边缘计算与物联网实训室解决方案

一、引言 随着物联网&#xff08;IoT&#xff09;技术的迅猛发展&#xff0c;数据量呈爆炸性增长&#xff0c;对数据处理和实时响应能力提出了更高要求。传统的云计算模式由于数据传输延迟和带宽占用等问题&#xff0c;难以满足物联网场景中对低延迟和高可靠性的需求。边缘计算…

QT判断操作系统类型和CPU架构

一、判断操作系统类型 1.在.pro文件中判断 macx { # mac only } unix:!macx{ # linux only } win32 { # windows only }2.在代码中判断 可以包含QGlobal头文件&#xff0c;判断预定义宏 #include <QtGlobal> ... #ifdef Q_OS_MAC // mac #endif#ifdef Q_OS_LINUX // …

Datawhale X 魔搭 AI夏令营 Task1 从零入门AI生图原理实践笔记

赛题内容 参赛者需在可图Kolors模型的基础上训练LoRA模型&#xff0c;生成无限风格&#xff0c;如水墨画风格、水彩风格、赛博朋克风格、日漫风格… 基于LoRA模型生成8张图片组成连贯故事&#xff0c;故事内容可自定义&#xff1b;基于8图故事&#xff0c;评估LoRA风格的美感度…

企业大模型落地从0到0.1

现在人工智能里的“大明星”——大模型&#xff0c;正在悄悄改变各行各业。这就像给企业装上了一颗聪明的大脑&#xff0c;能帮助解决各种棘手问题&#xff0c;提升工作效率。今天&#xff0c;我们就来分析下企业如何一步一步让这个“大脑”在自家地盘里真正派上用场&#xff0…

LVS 实现四层负载均衡项目实战--DR模式

一、环境准备 主机名IP地址router eth0&#xff1a;172.25.254.100 eth1&#xff1a;192.168.0.100 clienteth0&#xff1a;172.25.254.200lvseth1&#xff1a;192.168.0.50web1web2 1、client配置 [rootclient ~]# cat /etc/NetworkManager/system-connections/eth0.nmconne…

ArrayList 动态扩容

目录 一、 构造函数1、有参构造函数2、无参构造函数 二、数组扩容三、总结 一、 构造函数 1、有参构造函数 1.1如果指定了容量大小&#xff0c;创建该大小的数组 1.2如果没有指定大小&#xff0c;默认创建空数组 1.3如果是指定小于0的大小&#xff0c;抛出异常 2、无参构造…

前端工程化15-邂逅ES6的语法规范

4、ES6邂逅 3.1、什么是ECMA ECMA&#xff08;European Computer Manufacturers Association&#xff09;中文名为欧洲计算机制造商协会&#xff0c;这个组织的目标是评估、开发和认可电信和计算机标准。1 994年后该组织改名为Ecma国际。 3.2、什么是ECMAScript ECMAScript…

怎样找回U盘里误删的文件?试试这些方法!

在日常工作和生活中&#xff0c;我们经常会使用U盘来存储和传输重要的文件。然而&#xff0c;由于操作失误或其他原因&#xff0c;我们有时会误删U盘中的文件。当遇到这种情况时&#xff0c;很多人可能会感到焦虑和无助。不过&#xff0c;幸运的是&#xff0c;有几种方法可以帮…

三十六、【人工智能】【机器学习】【监督学习】- Bagging算法模型

系列文章目录 第一章 【机器学习】初识机器学习 第二章 【机器学习】【监督学习】- 逻辑回归算法 (Logistic Regression) 第三章 【机器学习】【监督学习】- 支持向量机 (SVM) 第四章【机器学习】【监督学习】- K-近邻算法 (K-NN) 第五章【机器学习】【监督学习】- 决策树…

【清空大脑】

清空大脑&#xff0c;就是把大脑里的想法&#xff0c;都写下来&#xff0c;放到一个地方。这样&#xff0c;可以降低大脑的压力。 我记得我第一次清空大脑的时候&#xff0c;使用的事微软OutLook的便签功能&#xff0c;一共记录了200多项。 看着这200多项&#xff0c;我感觉自…

ubuntu设置开机自动执行脚本、ubuntu设置开机自动启动java服务

使用 crontab 编辑器添加一个任务&#xff0c;该任务将在系统启动时执行你的脚本。在终端中运行以下命令&#xff1a; crontab -e添加开机自启任务&#xff1a; 在打开的编辑器中&#xff0c;添加以下行&#xff1a; reboot /home/demo.jar &这行代码告诉 cron 在每次系统…

微调神器LLaMA-Factory官方保姆级教程来了,从环境搭建到模型训练评估全覆盖

1. 项目背景 开源大模型如LLaMA&#xff0c;Qwen&#xff0c;Baichuan等主要都是使用通用数据进行训练而来&#xff0c;其对于不同下游的使用场景和垂直领域的效果有待进一步提升&#xff0c;衍生出了微调训练相关的需求&#xff0c;包含预训练&#xff08;pt&#xff09;&…

探索AI角色扮演的新前端工具:SillyTavern

在人工智能&#xff08;AI&#xff09;领域&#xff0c;角色扮演&#xff08;Roleplay&#xff09;无疑是一个富有趣味且充满潜力的应用场景。无论你是AI爱好者还是开发者&#xff0c;找到一个合适的前端工具来访问并与语言模型进行互动是至关重要的。今天&#xff0c;我们将介…

[2024_08_12日志]ONNX Runtime的使用

问题&#xff1a;Segmentation 错误。在 C API 上使用自定义 onnx 模型运行。模型在 Python 上按预期工作&#xff0c;但在 C API 上运行相同的模型时&#xff0c;会收到一个分段错误 python的模型代码如下&#xff1a; class Facenet(nn.Module):def __init__(self, backbone…

lvs详解及实例配置

目录 1.什么是负载均衡 1.1为什么用负载均衡 1.2.负载均衡类型 1.2.1.四层负载均衡 1.2.2.七层负载均衡 1.3 四层和七层的区别 2.LVS介绍 2.1LVS 的优势与不足 2.2LVS 核心组件和专业术语 3.ipvsadm命令 4.LVS集群中的增删改 4.1.管理集群服务中的增删改 4.2.管理集…

C:每日一题:单身狗

​​​​ 一、题目&#xff1a; 在一个整型数组中&#xff0c;只有一个数字出现一次&#xff0c;其他数组都是成对出现的&#xff0c;请找出那个只出现一次的数字。 整型数组 int arr[ ] {1,1,2,2,3,4,4} 二、思路分析&#xff1a; 1.&#xff0c;明确目标&#xff0c;选择…