微调神器LLaMA-Factory官方保姆级教程来了,从环境搭建到模型训练评估全覆盖

news2024/11/16 0:04:43

1. 项目背景

开源大模型如LLaMA,Qwen,Baichuan等主要都是使用通用数据进行训练而来,其对于不同下游的使用场景和垂直领域的效果有待进一步提升,衍生出了微调训练相关的需求,包含预训练(pt),指令微调(sft),基于人工反馈的对齐(rlhf)等全链路。但大模型训练对于显存和算力的要求较高,同时也需要下游开发者对大模型本身的技术有一定了解,具有一定的门槛。

LLaMA-Factory项目的目标是整合主流的各种高效训练微调技术,适配市场主流开源模型,形成一个功能丰富,适配性好的训练框架。项目提供了多个高层次抽象的调用接口,包含多阶段训练,推理测试,benchmark评测,API Server等,使开发者开箱即用。同时借鉴 Stable Diffsion WebUI相关,本项目提供了基于gradio的网页版工作台,方便初学者可以迅速上手操作,开发出自己的第一个模型。

2. 本教程目标

以Meta-Llama-3-8B-Instruct 模型 和 Linux + RTX 4090 24GB环境,LoRA+sft训练阶段为例子,帮助开发者迅速浏览和实践本项目会涉及到的常见若干个功能,包括:

  1. 原始模型直接推理

  2. 自定义数据集构建

  3. 基于LoRA的sft指令微调

  4. 动态合并LoRA的推理

  5. 批量预测和训练效果评估

  6. LoRA模型合并导出

  7. 一站式webui board的使用

  8. API Server的启动与调用

  9. 大模型主流评测 benchmark

本教程大部分内容都可以通过LLaMA-Factory下的 README.md, data/README.md,examples文件夹下的示例脚本得到,遇到问题请先阅读项目原始相关资料。

关于全参训练,flash-attention加速, deepspeed,rlhf,多模态模型训练等更高阶feature的使用,后续会有额外的教程来介绍。

3. 前置准备

训练顺利运行需要包含4个必备条件:

  1. 机器本身的硬件和驱动支持(包含显卡驱动,网络环境等)

  2. 本项目及相关依赖的python库的正确安装(包含CUDA, Pytorch等)

  3. 目标训练模型文件的正确下载

  4. 训练数据集的正确构造和配置

3.1 硬件环境校验

显卡驱动和CUDA的安装,网络教程很多,不在本教程范围以内
使用以下命令做最简单的校验

nvidia-smi

预期输出如图,显示GPU当前状态和配置信息

那多大的模型用什么训练方式需要多大的GPU呢,可参考 https://github.com/hiyouga/LLaMA-Factory?tab=readme-ov-file#hardware-requirement
新手建议是3090和4090起步,可以比较容易地训练比较主流的入门级别大模型 7B和8B版本。

3.2 CUDA和Pytorch环境校验

请参考项目的readme进行安装
https://github.com/hiyouga/LLaMA-Factory?tab=readme-ov-file#dependence-installation

2024年51期间系统版本有较大升级,2024-05-06 号的安装版本命令如下,请注意conda环境的激活。

git clone https://github.com/hiyouga/LLaMA-Factory.git  
conda create -n llama_factory python=3.10  
conda activate llama_factory  
cd LLaMA-Factory  
pip install -e .[metrics]

安装后使用以下命令做简单的正确性校验

校验1

import torch  
torch.cuda.current_device()  
torch.cuda.get_device_name(0)  
torch.__version__

预期输出如图

如果识别不到可用的GPU,则说明环境准备还有问题,需要先进行处理,才能往后进行。

校验2

同时对本库的基础安装做一下校验,输入以下命令获取训练相关的参数指导, 否则说明库还没有安装成功

llamafactory-cli train -h

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

3.3 模型下载与可用性校验

项目支持通过模型名称直接从huggingface 和modelscope下载模型,但这样不容易对模型文件进行统一管理,所以这里笔者建议使用手动下载,然后后续使用时使用绝对路径来控制使用哪个模型。
以Meta-Llama-3-8B-Instruct为例,通过huggingface 下载(可能需要先提交申请通过)

git clone https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

modelscope 下载(适合中国大陆网络环境)

git clone https://www.modelscope.cn/LLM-Research/Meta-Llama-3-8B-Instruct.git

或者

#模型下载  
from modelscope import snapshot_download  
model_dir = snapshot_download('LLM-Research/Meta-Llama-3-8B-Instruct')

按网友反馈,由于网络环境等原因,文件下载后往往会存在文件不完整的很多情况,下载后需要先做一下校验,校验分为两部分,第一先检查一下文件大小和文件数量是否正确,和原始的huggingface显示的做一下肉眼对比

第二步是跑一下官方readme里提供的原始推理demo,验证模型文件的正确性和transformers库等软件的可用

import transformers  
import torch  
  
# 切换为你下载的模型文件目录, 这里的demo是Llama-3-8B-Instruct  
# 如果是其他模型,比如qwen,chatglm,请使用其对应的官方demo  
model_id = "/media/codingma/LLM/llama3/Meta-Llama-3-8B-Instruct"  
  
pipeline = transformers.pipeline(  
    "text-generation",  
    model=model_id,  
    model_kwargs={"torch_dtype": torch.bfloat16},  
    device_map="auto",  
)  
  
messages = [  
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},  
    {"role": "user", "content": "Who are you?"},  
]  
  
prompt = pipeline.tokenizer.apply_chat_template(  
        messages,  
        tokenize=False,  
        add_generation_prompt=True  
)  
  
terminators = [  
    pipeline.tokenizer.eos_token_id,  
    pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")  
]  
  
outputs = pipeline(  
    prompt,  
    max_new_tokens=256,  
    eos_token_id=terminators,  
    do_sample=True,  
    temperature=0.6,  
    top_p=0.9,  
)  
print(outputs[0]["generated_text"][len(prompt):])

3.4 数据集部分放到后面一起说明

4. 原始模型直接推理

在进行后续的环节之前,我们先使用推理模式,先验证一下LLaMA-Factory的推理部分是否正常。LLaMA-Factory 带了基于gradio开发的ChatBot推理页面, 帮助做模型效果的人工测试。在LLaMA-Factory 目录下执行以下命令

本脚本参数参考自 LLaMA-Factory/examples/inference/llama3.yaml at main · hiyouga/LLaMA-Factory

CUDA_VISIBLE_DEVICES=0 llamafactory-cli webchat \  
    --model_name_or_path /media/codingma/LLM/llama3/Meta-Llama-3-8B-Instruct \  
    --template llama3

CUDA_VISIBLE_DEVICES=0 是指定了当前程序使用第0张卡,是指定全局变量的作用, 也可以不使用

llamafactory-cli webchat \  
    --model_name_or_path /media/codingma/LLM/llama3/Meta-Llama-3-8B-Instruct \  
    --template llama3

需要注意的是,本次及后续所有的程序的入口都是 llamafactory-cli, 通过不同的参数控制现在是实现什么功能,比如现在是想使用网页版本直接推理,所以第一个参数设置为webchat, 所有的可选项包括

动作参数枚举参数说明
version显示版本信息
train命令行版本训练
chat命令行版本推理chat
export模型合并和导出
api启动API server,供接口调用
eval使用mmlu等标准数据集做评测
webchat前端版本纯推理的chat页面
webui启动LlamaBoard前端页面,包含可视化训练,预测,chat,模型合并多个子页面

另外两个关键参数解释如下,后续的基本所有环节都会继续使用这两个参数

参数名称参数说明
model_name_or_path参数的名称(huggingface或者modelscope上的标准定义,如“meta-llama/Meta-Llama-3-8B-Instruct”), 或者是本地下载的绝对路径,如/media/codingma/LLM/llama3/Meta-Llama-3-8B-Instruct
template模型问答时所使用的prompt模板,不同模型不同,请参考https://github.com/hiyouga/LLaMA-Factory?tab=readme-ov-file#supported-models 获取不同模型的模板定义,否则会回答结果会很奇怪或导致重复生成等现象的出现。chat 版本的模型基本都需要指定,比如Meta-Llama-3-8B-Instruct的template 就是 llama3

当然你也可以提前把相关的参数存在yaml文件里,比如LLaMA-Factory/examples/inference/llama3.yaml at main · hiyouga/LLaMA-Factory, 本地位置是 examples/inference/llama3.yaml ,内容如下

model_name_or_path: /media/codingma/LLM/llama3/Meta-Llama-3-8B-Instruct  
template: llama3

这样就可以通过如下命令启动,其效果跟上面是一样的,但是更方便管理

llamafactory-cli webchat examples/inference/llama3.yaml

效果如图,可通过 http://localhost:7860/ 进行访问

注意:这里的localhost:7860 指的是程序启动机器自身的7860端口,云上的用户可能无法通过本地的笔记本电脑直接访问,需要找云厂商获取域名和端口号的一些配置关系进行配置

比如阿里云用户需要做一下如下环境变量的配置才能正常运行gradio,然后再通过阿里云给的域名映射访问

export GRADIO_ROOT_PATH=/${JUPYTER_NAME}/proxy/7860/

5. 自定义数据集构建

数据集的格式要求在不同的阶段是不同的,本教程以sft阶段的数据集需求,将以系统自带的identity数据集和将自定义的一个商品文案生成数据集为例,介绍数据集的使用。更多详情可以在https://github.com/hiyouga/LLaMA-Factory/blob/main/data/README_zh.md 中找到相关解释。

系统目前支持 alpaca 和sharegpt两种数据格式,以alpaca为例,整个数据集是一个json对象的list,具体数据格式为

[  
  {  
    "instruction": "用户指令(必填)",  
    "input": "用户输入(选填)",  
    "output": "模型回答(必填)",  
    "system": "系统提示词(选填)",  
    "history": [  
      ["第一轮指令(选填)", "第一轮回答(选填)"],  
      ["第二轮指令(选填)", "第二轮回答(选填)"]  
    ]  
  }  
]

例子比如单轮(alpaca_data_zh_51k.json 中的例子, 数据集在data/dataset_info.json中注册为alpaca_zh)

{  
  "instruction": "写一个有效的比较语句",  
  "input": "篮球和足球",  
  "output": "篮球和足球都是受欢迎的运动。"  
}

和多轮 (oaast_sft_zh.json 中的例子, 数据集在data/dataset_info.json中注册为oaast_sft_zh)

{  
  "instruction": "谢谢",  
  "input": "",  
  "output": "不用谢! 很高兴我提供的信息能够帮助到你! 如果还有什么其他问题也可以向我提问。",  
  "history": [  
    [  
      "请你给我写一个面试准备计划,我想要去面试微软的程序员岗位",  
      "首先,你可以去微软官网寻找招聘信息并申请面试。\n其次,您可以在社交媒体平台寻找微软公司对程序员的面试问题,并做好准备。\n最后,您可以自己对面试过程进行模拟,熟悉话题并减少紧张感。\n我希望你能面试成功。"  
    ]  
  ]  
}

所以我们训练的数据最好也转换成这种格式,然后在 data/dataset_info.json中进行注册(如果不做字段名称转换,则需要在注册的时候在 columns字段中做两个数据的映射配置)

接下来,我们使用两个具体的例子来说明数据集的使用

第一个是系统自带的identity.json数据集(已默认在data/dataset_info.json 注册为identity),对应文件已经在data目录下,我们通过操作系统的文本编辑器的替换功能,可以替换其中的NAME 和 AUTHOR ,换成我们需要的内容。

替换前

{  
  "instruction": "Who are you?",  
  "input": "",  
  "output": "I am NAME, an AI assistant developed by AUTHOR. How can I assist you today?"  
}

替换后

{  
  "instruction": "Who are you?",  
  "input": "",  
  "output": "I am PonyBot, an AI assistant developed by LLaMA Factory. How can I assist you today?"  
}

第二个是一个商品文案生成数据集,原始链接为https://cloud.tsinghua.edu.cn/f/b3f119a008264b1cabd1/?dl=1

原始格式如下,很明显,训练目标是输入content (也就是prompt), 输出 summary (对应response)

{  
    "content": "类型#裤*版型#宽松*风格#性感*图案#线条*裤型#阔腿裤",   
    "summary": "宽松的阔腿裤这两年真的吸粉不少,明星时尚达人的心头爱。毕竟好穿时尚,谁都能穿出腿长2米的效果宽松的裤腿,当然是遮肉小能手啊。上身随性自然不拘束,面料亲肤舒适贴身体验感棒棒哒。系带部分增加设计看点,还让单品的设计感更强。腿部线条若隐若现的,性感撩人。颜色敲温柔的,与裤子本身所呈现的风格有点反差萌。"  
}

想将该自定义数据集放到我们的系统中使用,则需要进行如下两步操作

  1. 复制该数据集到 data目录下

  2. 修改 data/dataset_info.json 新加内容完成注册, 该注册同时完成了3件事

  • 自定义数据集的名称为adgen_local,后续训练的时候就使用这个名称来找到该数据集

  • 指定了数据集具体文件位置

  • 定义了原数据集的输入输出和我们所需要的格式之间的映射关系

6. 基于LoRA的sft指令微调

在准备好数据集之后,我们就可以开始准备训练了,我们的目标就是让原来的LLaMA3模型能够学会我们定义的“你是谁”,同时学会我们希望的商品文案的一些生成。

这里我们先使用命令行版本来做训练,从命令行更容易学习相关的原理。

本脚本参数改编自 https://github.com/hiyouga/LLaMA-Factory/blob/main/examples/lora_single_gpu/llama3_lora_sft.yaml

CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \  
    --stage sft \  
    --do_train \  
    --model_name_or_path /media/codingma/LLM/llama3/Meta-Llama-3-8B-Instruct \  
    --dataset alpaca_gpt4_zh,identity,adgen_local \  
    --dataset_dir ./data \  
    --template llama3 \  
    --finetuning_type lora \  
    --lora_target q_proj,v_proj \  
    --output_dir ./saves/LLaMA3-8B/lora/sft \  
    --overwrite_cache \  
    --overwrite_output_dir \  
    --cutoff_len 1024 \  
    --preprocessing_num_workers 16 \  
    --per_device_train_batch_size 2 \  
    --per_device_eval_batch_size 1 \  
    --gradient_accumulation_steps 8 \  
    --lr_scheduler_type cosine \  
    --logging_steps 50 \  
    --warmup_steps 20 \  
    --save_steps 100 \  
    --eval_steps 50 \  
    --evaluation_strategy steps \  
    --load_best_model_at_end \  
    --learning_rate 5e-5 \  
    --num_train_epochs 5.0 \  
    --max_samples 1000 \  
    --val_size 0.1 \  
    --plot_loss \  
    --fp16

关于参数的完整列表和解释可以通过如下命令来获取

llamafactory-cli train -h

这里我对部分关键的参数做一下解释,model_name_or_path 和template 上文已解释

参数名称参数说明
stage当前训练的阶段,枚举值,有“sft”,“pt”,“rw”,"ppo"等,代表了训练的不同阶段,这里我们是有监督指令微调,所以是sft
do_train是否是训练模式
dataset使用的数据集列表,所有字段都需要按上文在data_info.json里注册,多个数据集用","分隔
dataset_dir数据集所在目录,这里是 data,也就是项目自带的data目录
finetuning_type微调训练的类型,枚举值,有"lora",“full”,"freeze"等,这里使用lora
lora_target如果finetuning_type是lora,那训练的参数目标的定义,这个不同模型不同,请到https://github.com/hiyouga/LLaMA-Factory/tree/main?tab=readme-ov-file#supported-models 获取 不同模型的 可支持module, 比如llama3 默认是 q_proj,v_proj
output_dir训练结果保存的位置
cutoff_len训练数据集的长度截断
per_device_train_batch_size每个设备上的batch size,最小是1,如果GPU 显存够大,可以适当增加
fp16使用半精度混合精度训练
max_samples每个数据集采样多少数据
val_size随机从数据集中抽取多少比例的数据作为验证集
注意:精度相关的参数还有bf16 和pure_bf16,但是要注意有的老显卡,比如V100就无法支持bf16,会导致程序报错或者其他错误

训练过程中,系统会按照logging_steps的参数设置,定时输出训练日志,包含当前loss,训练进度等

训练完后就可以在设置的output_dir下看到如下内容,主要包含3部分

  1. adapter开头的就是 LoRA保存的结果了,后续用于模型推理融合

  2. training_loss 和trainer_log等记录了训练的过程指标

  3. 其他是训练当时各种参数的备份

关于loss是什么等,这块不在本教程讨论内容范围之内,只需要记住loss在 正常情况下会随着训练的时间慢慢变小,最后需要下降到1以下的位置才会有一个比较好的效果,可以作为训练效果的一个中间指标。
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈


7. 动态合并LoRA的推理

本脚本参数改编自 https://github.com/hiyouga/LLaMA-Factory/blob/main/examples/inference/llama3_lora_sft.yaml

当基于LoRA的训练进程结束后,我们如果想做一下动态验证,在网页端里与新模型对话,与步骤4的原始模型直接推理相比,唯一的区别是需要通过finetuning_type参数告诉系统,我们使用了LoRA训练,然后将LoRA的模型位置通过 adapter_name_or_path参数即可。

CUDA_VISIBLE_DEVICES=0 llamafactory-cli webchat \  
    --model_name_or_path /media/codingma/LLM/llama3/Meta-Llama-3-8B-Instruct \  
    --adapter_name_or_path ./saves/LLaMA3-8B/lora/sft  \  
    --template llama3 \  
    --finetuning_type lora

效果如下,可以看到,模型整个已经在学习了新的数据知识,学习了新的身份认知和商品文案生成的格式。

作为对比,如果删除LoRA相关参数,只使用原始模型重新启动测试,可以看到模型还是按照通用的一种回答。

如果不方便使用webui来做交互,使用命令行来做交互,同样也是可以的。

本脚本改编自 https://github.com/hiyouga/LLaMA-Factory/blob/main/examples/inference/llama3_lora_sft.yaml

CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat \  
    --model_name_or_path /media/codingma/LLM/llama3/Meta-Llama-3-8B-Instruct \  
    --adapter_name_or_path ./saves/LLaMA3-8B/lora/sft  \  
    --template llama3 \  
    --finetuning_type lora

效果如下

8. 批量预测和训练效果评估

当然上文中的人工交互测试,会偏感性,那有没有办法批量地预测一批数据,然后使用自动化的bleu和 rouge等常用的文本生成指标来做评估。指标计算会使用如下3个库,请先做一下pip安装

pip install jieba  
pip install rouge-chinese  
pip install nltk

本脚本参数改编自 https://github.com/hiyouga/LLaMA-Factory/blob/main/examples/lora_single_gpu/llama3_lora_predict.yaml

CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \  
    --stage sft \  
    --do_predict \  
    --model_name_or_path /media/codingma/LLM/llama3/Meta-Llama-3-8B-Instruct \  
    --adapter_name_or_path ./saves/LLaMA3-8B/lora/sft  \  
    --dataset alpaca_gpt4_zh,identity,adgen_local \  
    --dataset_dir ./data \  
    --template llama3 \  
    --finetuning_type lora \  
    --output_dir ./saves/LLaMA3-8B/lora/predict \  
    --overwrite_cache \  
    --overwrite_output_dir \  
    --cutoff_len 1024 \  
    --preprocessing_num_workers 16 \  
    --per_device_eval_batch_size 1 \  
    --max_samples 20 \  
    --predict_with_generate

与训练脚本主要的参数区别如下两个

参数名称参数说明
do_predict现在是预测模式
predict_with_generate现在用于生成文本
max_samples每个数据集采样多少用于预测对比

最后会在output_dir下看到如下内容

其中 generated_predictions.jsonl 文件 输出了要预测的数据集的原始label和模型predict的结果

predict_results.json给出了原始label和模型predict的结果,用自动计算的指标数据

这里给相关的指标做一下进一步的解释

指标含义
BLEU-4BLEU(Bilingual Evaluation Understudy)是一种常用的用于评估机器翻译质量的指标。BLEU-4 表示四元语法 BLEU 分数,它衡量模型生成文本与参考文本之间的 n-gram 匹配程度,其中 n=4。值越高表示生成的文本与参考文本越相似,最大值为 100。
predict_rouge-1 和 predict_rouge-2ROUGE(Recall-Oriented Understudy for Gisting Evaluation)是一种用于评估自动摘要和文本生成模型性能的指标。ROUGE-1 表示一元 ROUGE 分数,ROUGE-2 表示二元 ROUGE 分数,分别衡量模型生成文本与参考文本之间的单个词和双词序列的匹配程度。值越高表示生成的文本与参考文本越相似,最大值为 100。
predict_rouge-lROUGE-L 衡量模型生成文本与参考文本之间最长公共子序列(Longest Common Subsequence)的匹配程度。值越高表示生成的文本与参考文本越相似,最大值为 100。
predict_runtime预测运行时间,表示模型生成一批样本所花费的总时间。单位通常为秒。
predict_samples_per_second每秒生成的样本数量,表示模型每秒钟能够生成的样本数量。通常用于评估模型的推理速度。
predict_steps_per_second每秒执行的步骤数量,表示模型每秒钟能够执行的步骤数量。对于生成模型,一般指的是每秒钟执行生成操作的次数。

9. LoRA模型合并导出

如果想把训练的LoRA和原始的大模型进行融合,输出一个完整的模型文件的话,可以使用如下命令。合并后的模型可以自由地像使用原始的模型一样应用到其他下游环节,当然也可以递归地继续用于训练。

本脚本参数改编自 https://github.com/hiyouga/LLaMA-Factory/blob/main/examples/merge_lora/llama3_lora_sft.yaml

CUDA_VISIBLE_DEVICES=0 llamafactory-cli export \  
    --model_name_or_path /media/codingma/LLM/llama3/Meta-Llama-3-8B-Instruct \  
    --adapter_name_or_path ./saves/LLaMA3-8B/lora/sft  \  
    --template llama3 \  
    --finetuning_type lora \  
    --export_dir megred-model-path \  
    --export_size 2 \  
    --export_device cpu \  
    --export_legacy_format False

10. 一站式webui board的使用

到这里,恭喜你完成了LLaMA-Efficent-Tuning训练框架的基础使用,那还有什么内容是没有介绍的呢?还有很多!这里介绍一个在提升交互体验上有重要作用的功能, 支持模型训练全链路的一站式WebUI board。一个好的产品离不开好的交互,Stable Diffusion的大放异彩的重要原因除了强大的内容输出效果,就是它有一个好的WebUI。这个board将训练大模型主要的链路和操作都在一个页面中进行了整合,所有参数都可以可视化地编辑和操作

通过以下命令启动

注意:目前webui版本只支持单机单卡,如果是多卡请使用命令行版本
llamafactory-cli webui

如图所示,上述的多个不同的大功能模块都通过不同的tab进行了整合,提供了一站式的操作体验。

当各种参数配置好后,在train页面,可以通过预览命令功能,将训练脚本导出,用于支持多gpu训练

点击开始按钮, 即可开始训练,网页端和服务器端会同步输出相关的日志结果

训练完毕后, 点击“刷新适配器”,即可找到该模型历史上使用webui训练的LoRA模型文件,后续再训练或者执行chat的时候,即会将此LoRA一起加载。

11. API Server的启动与调用

训练好后,可能部分同学会想将模型的能力形成一个可访问的网络接口,通过API 来调用,接入到langchian或者其他下游业务中,项目也自带了这部分能力。

API 实现的标准是参考了OpenAI的相关接口协议,基于uvicorn服务框架进行开发, 使用如下的方式启动

本脚本改编自 https://github.com/hiyouga/LLaMA-Factory/blob/main/examples/inference/llama3_lora_sft.yaml

CUDA_VISIBLE_DEVICES=0 API_PORT=8000 llamafactory-cli api \  
    --model_name_or_path /media/codingma/LLM/llama3/Meta-Llama-3-8B-Instruct \  
    --adapter_name_or_path ./saves/LLaMA3-8B/lora/sft \  
    --template llama3 \  
    --finetuning_type lora

项目也支持了基于vllm 的推理后端,但是这里由于一些限制,需要提前将LoRA 模型进行merge,使用merge后的完整版模型目录或者训练前的模型原始目录都可。

CUDA_VISIBLE_DEVICES=0 API_PORT=8000 llamafactory-cli api \  
    --model_name_or_path megred-model-path \  
    --template llama3 \  
    --infer_backend vllm \  
    --vllm_enforce_eager

服务启动后,即可按照openai 的API 进行远程访问,主要的区别就是替换 其中的base_url,指向所部署的机器url和端口号即可。

12. 进阶-大模型主流评测 benchmark

虽然大部分同学的主流需求是定制一个下游的垂直模型,但是在部分场景下,也可能有同学会使用本项目来做更高要求的模型训练,用于大模型刷榜单等,比如用于评测mmlu等任务。当然这类评测同样可以用于评估大模型二次微调之后,对于原来的通用知识的泛化能力是否有所下降。(因为一个好的微调,尽量是在具备垂直领域知识的同时,也保留了原始的通用能力)

本项目提供了mmlu,cmmlu, ceval三个常见数据集的自动评测脚本,按如下方式进行调用即可。

本脚本改编自 LLaMA-Factory/examples/lora_single_gpu/llama3_lora_eval.yaml at main · hiyouga/LLaMA-Factory

如果是chat版本的模型

CUDA_VISIBLE_DEVICES=0 llamafactory-cli eval \  
--model_name_or_path /media/codingma/LLM/llama3/Meta-Llama-3-8B-Instruct \  
--template llama3 \  
--task mmlu \  
--split validation \  
--lang en \  
--n_shot 5 \  
--batch_size 1

输出如下, 具体任务的指标定义请参考mmlu,cmmlu, ceval等任务原始的相关资料, 和llama3的官方报告基本一致

        Average: 63.64                                                                                                                                       
           STEM: 50.83  
Social Sciences: 76.31  
     Humanities: 56.63  
          Other: 73.31

如果是base版本的模型,template改为fewshot即可

CUDA_VISIBLE_DEVICES=0 llamafactory-cli eval \  
--model_name_or_path /media/codingma/LLM/llama3/Meta-Llama-3-8B \  
--template fewshot \  
--task mmlu \  
--split validation \  
--lang en \  
--n_shot 5 \  
--batch_size 1

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

自己也整理很多AI大模型资料:AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2033918.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

探索AI角色扮演的新前端工具:SillyTavern

在人工智能&#xff08;AI&#xff09;领域&#xff0c;角色扮演&#xff08;Roleplay&#xff09;无疑是一个富有趣味且充满潜力的应用场景。无论你是AI爱好者还是开发者&#xff0c;找到一个合适的前端工具来访问并与语言模型进行互动是至关重要的。今天&#xff0c;我们将介…

[2024_08_12日志]ONNX Runtime的使用

问题&#xff1a;Segmentation 错误。在 C API 上使用自定义 onnx 模型运行。模型在 Python 上按预期工作&#xff0c;但在 C API 上运行相同的模型时&#xff0c;会收到一个分段错误 python的模型代码如下&#xff1a; class Facenet(nn.Module):def __init__(self, backbone…

lvs详解及实例配置

目录 1.什么是负载均衡 1.1为什么用负载均衡 1.2.负载均衡类型 1.2.1.四层负载均衡 1.2.2.七层负载均衡 1.3 四层和七层的区别 2.LVS介绍 2.1LVS 的优势与不足 2.2LVS 核心组件和专业术语 3.ipvsadm命令 4.LVS集群中的增删改 4.1.管理集群服务中的增删改 4.2.管理集…

C:每日一题:单身狗

​​​​ 一、题目&#xff1a; 在一个整型数组中&#xff0c;只有一个数字出现一次&#xff0c;其他数组都是成对出现的&#xff0c;请找出那个只出现一次的数字。 整型数组 int arr[ ] {1,1,2,2,3,4,4} 二、思路分析&#xff1a; 1.&#xff0c;明确目标&#xff0c;选择…

【linux】nvidia AGX orin 多方法开机自启 .sh 文件

背景&#xff1a; 安装搜狗输入法时候&#xff0c;发现etc/xdg/autostart路径下写desktop文件的方式&#xff0c;于是把所有方案整理一下 为了让 .sh 文件在用户登录时自动执行&#xff0c;可以采用如下多种方法。 1. 使用 .desktop 文件 创建一个 .desktop 文件&#xff0c;将…

链表的奇偶节点重新排列及空指针问题分析【链表、空指针】

在处理链表问题时&#xff0c;重组链表节点是一种常见需求。本文将详细探讨如何在链表中将奇数索引节点放在偶数索引节点之前&#xff0c;并深入分析实现过程中的空指针问题及其解决方案。 1. 问题描述 给定一个单链表&#xff0c;要求将链表中的节点按照奇数索引节点在前、偶…

掌握 PyTorch 张量乘法:八个关键函数与应用场景对比解析

PyTorch提供了几种张量乘法的方法&#xff0c;每种方法都是不同的&#xff0c;并且有不同的应用。我们来详细介绍每个方法&#xff0c;并且详细解释这些函数有什么区别&#xff1a; 1、torch.matmul torch.matmul 是 PyTorch 中用于矩阵乘法的函数。它能够处理各种不同维度的张…

HTML零基础自学笔记(下)篇一 -8.8

HTML零基础自学笔记&#xff08;下&#xff09;---之表格标签详解 参考&#xff1a;pink老师篇一、表格标签是什么&#xff1f;基础内容&#xff08;主要作用、基本语法、标签释义、属性&#xff09;主要作用基本语法标签释义表格结构标签属性 合并单元格代码练习代码运行效果&…

IDEA 报错,无效的源发行版 无效的目标发行版:22

报错内容&#xff1a; 在编译项目的时候出现报错&#xff1a; 解决办法&#xff1a; 无效的源发行版 原因&#xff1a;编译的JDK版本与发布版本不一致 File -> Project Structure ->Project Settings 让其中的三处版本保持一致&#xff0c;具体操作如下&#xff1a; …

Vue3+Element-plus+setup使用vuemap/vue-amap实现高德地图API相关操作

首先要下载依赖并且引入 npm安装 // 安装核心库 npm install vuemap/vue-amap --save// 安装loca库 npm install vuemap/vue-amap-loca --save// 安装扩展库 npm install vuemap/vue-amap-extra --save cdn <script src"https://cdn.jsdelivr.net/npm/vuemap/vue-a…

linux反向代理原理:帮助用户更好地优化网络架构

Linux反向代理原理详解 反向代理是一种在网络架构中常用的技术&#xff0c;尤其在Linux环境下被广泛应用。它可以帮助实现负载均衡、安全防护和请求缓存等功能。本文将深入探讨Linux反向代理的原理、工作机制以及其应用场景。 1. 什么是反向代理 反向代理是指代理服务器接收客…

HarmonyOS Developer之图片帧动画播放器

创建image-animator组件 在pages/index目录下的hml文件中创建一个image-animator组件&#xff0c;css文件中编写组件样式&#xff0c;js文件中引用图片。 设置image-animator组件属性 添加iteration&#xff08;播放次数&#xff09;、reverse&#xff08;播放顺序&#xf…

SSM宠物商城-计算机毕业设计源码23666

摘 要 近年来&#xff0c;社会的发展和进步以及人们生活水平的提高&#xff0c;人们饲养宠物的习惯也越来越重视。很多家庭都把宠物视为家庭的重要成员。宠物不仅能给自己作伴&#xff0c;而且在生活中能充当自己精神的支柱&#xff0c;缓解压力、放松心态的伙伴。宠物不同于一…

Koa商城项目-轮播图模块(前端)

前言 通过这次独自做前后端发现有很多需要提升的地方&#xff0c;很多细节处理不到位。下面简单看一下本人自己做的效果吧~~ Git地址 https://gitee.com/ah-ah-bao/koa_system 效果图 前端代码 api/banner.ts import request from "../utils/request";export con…

Mapreduce_wordcount自定义单词计数

自定义的wordcount 数据处理过程 加载jar包 查看后面的pom文件 以上为需要的jar包路径&#xff0c;将其导入至idea中 Map package com.hadoop;import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; im…

计算机毕业设计选题推荐-宠物管理系统-Java/Python项目实战

✨作者主页&#xff1a;IT研究室✨ 个人简介&#xff1a;曾从事计算机专业培训教学&#xff0c;擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Python…

【彻底关闭win10 or 11系统自动更新】

直接上干货 win10或者win11自动更新后系统有bug&#xff0c;太闹心了&#xff0c;是时候选择一个稳定版本彻底关闭更新了 第一步&#xff1a; 在win11左下方搜索框输入&#xff1a;powershell&#xff0c; 选择「Windows PowerShell (管理员)」 第二步&#xff1a; 在 Wind…

FreeSWITCH

1概述 FreeSWITCH https://signalwire.com/freeswitch是一个开源的电话交换平台。官方给它的定义是–世界上第一个跨平台的、伸缩性极好的、免费的、多协议的电话软交换平台。由这个定义我们可以得出以下几点: FreeSWITCH是跨平台的。它能原生地运行于Windows、MaxOSX、Linux、…

智启万象 | Web 开发智能升级、简单易用

AI 的融入使 Web 的功能更加强大 同时也更加简单易用 一起回顾 2024 Google 开发者大会 了解 Web 开发 UI 功能和 OS 集成的最新创新 以及如何通过这些创新来打造卓越的应用体验 Web 不断的革新与发展&#xff0c;不仅为全球数十亿用户提供了丰富多样的在线体验&#xff0c;也为…

HCIP | 重发布实验

要求&#xff1a; 1.如图搭建网络拓扑&#xff0c;所有路由器各自创建一个环回接口&#xff0c;合理规划IP地址 2.R1-R2-R3-R4-R6之间使用OSPF协议&#xff0c;R4-R5-R6之间使用RIP协议 3.R1环回重发布方式引入OSPF网络 4.R4/R6上进行双点双向重发布 5.分析网络中出现路由…