Golang面试题六(GMP)

news2024/9/20 20:43:27

目录

1.Go线程实现模型

1:1 关系

N:1关系

M:N关系

2.GM模型

3.GMP模型

概念

模型简介

有关P和M的个数问题

P和M何时会被创建

4.调度器的设计策略

5.go func()  调度流程

6.调度器的生命周期

7.Go work stealing 机制

8.Go hand off 机制

9.Go 抢占式调度

9.Sysmon有什么作用

10.可视化GMP编程


1.Go线程实现模型

1:1 关系

1个协程绑定1个线程,这种最容易实现。协程的调度都由CPU完成了,不存在N:1缺点,

缺点:协程的创建、删除和切换的代价都由CPU完成,有点略显昂贵了。

N:1关系

N个协程绑定1个线程,优点就是协程在用户态线程即完成切换,不会陷入到内核态,这种切换非常的轻量快速。但也有很大的缺点,1个进程的所有协程都绑定在1个线程上

缺点:

  • 某个程序用不了硬件的多核加速能力
  • 一旦某协程阻塞,造成线程阻塞,本进程的其他协程都无法执行了,根本就没有并发的能力了。

M:N关系

M个协程绑定N个线程,是N:1和1:1类型的结合,克服了以上2种模型的缺点,但实现起来最为复杂。

协程跟线程是有区别的,线程由CPU调度是抢占式的,协程由用户态调度是协作式的,一个协程让出CPU后,才执行下一个协程。

2.GM模型

被废弃的goroutine调度器

M想要执行、放回G都必须访问全局G队列,并且M有多个,即多线程访问同一资源需要加锁进行保证互斥/同步,所以全局G队列是有互斥锁进行保护的。

老调度器有几个缺点:

  1. 创建、销毁、调度G都需要每个M获取锁,这就形成了激烈的锁竞争
  2. M转移G会造成延迟和额外的系统负载。比如当G中包含创建新协程的时候,M创建了G’,为了继续执行G,需要把G’交给M’执行,也造成了很差的局部性,因为G’和G是相关的,最好放在M上执行,而不是其他M'。
  3. 系统调用(CPU在M之间的切换)导致频繁的线程阻塞和取消阻塞操作增加了系统开销。

3.GMP模型

概念

  • G( Goroutine): 我们所说的协程,为用户级的轻量级线程,每个Goroutine对象中的sched保存着其上下文信息。
  • M( Machine): 对内核级线程的封装,数量对应真实的 CPU 数(真正干活的对象)。
  • P( Processor): 即为 G 和 M 的调度对象,用来调度 G 和 M 之间的关联关系,其数量可通过 GOMAXPROCS()来设置,默认为核心数。

模型简介

在Go中,线程是运行goroutine的实体,调度器的功能是把可运行的goroutine分配到工作线程上

  1. 全局队列(Global Queue):存放等待运行的G。
  2. P的本地队列:同全局队列类似,存放的也是等待运行的G,存的数量有限,不超过256个。新建G'时,G'优先加入到P的本地队列,如果队列满了,则会把本地队列中一半的G移动到全局队列。
  3. P列表:所有的P都在程序启动时创建,并保存在数组中,最多有GOMAXPROCS(可配置)个。
  4. M:线程想运行任务就得获取P,从P的本地队列获取G,P队列为空时,M也会尝试从全局队列一批G放到P的本地队列,或从其他P的本地队列一半放到自己P的本地队列。M运行G,G执行之后,M会从P获取下一个G,不断重复下去。

Goroutine调度器和OS调度器是通过M结合起来的,每个M都代表了1个内核线程,OS调度器负责把内核线程分配到CPU的核上执行。

有关P和M的个数问题

1、P的数量:

  • 由启动时环境变量$GOMAXPROCS或者是由runtime的方法GOMAXPROCS()决定。这意味着在程序执行的任意时刻都只有$GOMAXPROCS个goroutine在同时运行。

2、M的数量:

  • go语言本身的限制:go程序启动时,会设置M的最大数量,默认10000.但是内核很难支持这么多的线程数,所以这个限制可以忽略。
  • runtime/debug中的SetMaxThreads函数,设置M的最大数量
  • 一个M阻塞了,会创建新的M。

M与P的数量没有绝对关系,一个M阻塞,P就会去创建或者切换另一个M,所以,即使P的默认数量是1,也有可能会创建很多个M出来。

P和M何时会被创建

1、P何时创建:在确定了P的最大数量n后,运行时系统会根据这个数量创建n个P。

2、M何时创建:没有足够的M来关联P并运行其中的可运行的G。比如所有的M此时都阻塞住了,而P中还有很多就绪任务,就会去寻找空闲的M,而没有空闲的,就会去创建新的M。

4.调度器的设计策略

复用线程:避免频繁的创建、销毁线程,而是对线程的复用。

1)work stealing机制

当本线程无可运行的G时,尝试从其他线程绑定的P偷取G,而不是销毁线程。

2)hand off机制

当本线程因为G进行系统调用阻塞时,线程释放绑定的P,把P转移给其他空闲的线程执行。

利用并行GOMAXPROCS设置P的数量,最多有GOMAXPROCS个线程分布在多个CPU上同时运行。GOMAXPROCS也限制了并发的程度,比如GOMAXPROCS = 核数/2,则最多利用了一半的CPU核进行并行。

抢占:在coroutine中要等待一个协程主动让出CPU才执行下一个协程,在Go中,一个goroutine最多占用CPU 10ms,防止其他goroutine被饿死,这就是goroutine不同于coroutine的一个地方。

全局G队列:在新的调度器中依然有全局G队列,当P的本地队列为空时,优先从全局队列获取,如果全局队列为空时则通过work stealing机制从其他P的本地队列偷取G。

5.go func()  调度流程

从上图我们可以分析出几个结论:

1、我们通过 go func()来创建一个goroutine;

2、有两个存储G的队列,一个是局部调度器P的本地队列、一个是全局G队列。新创建的G会先保存在P的本地队列中,如果P的本地队列已经满了就会保存在全局的队列中;

3、G只能运行在M中,一个M必须持有一个P,M与P是1:1的关系。M会从P的本地队列弹出一个可执行状态的G来执行,如果P的本地队列为空,就会想其他的MP组合偷取一个可执行的G来执行;

4、一个M调度G执行的过程是一个循环机制;

5、当M执行某一个G时候如果发生了syscall或则其余阻塞操作,M会阻塞,如果当前有一些G在执行,runtime会把这个线程M从P中摘除(detach),然后再创建一个新的操作系统的线程(如果有空闲的线程可用就复用空闲线程)来服务于这个P;

6、当M系统调用结束时候,这个G会尝试获取一个空闲的P执行,并放入到这个P的本地队列。如果获取不到P,那么这个线程M变成休眠状态, 加入到空闲线程中,然后这个G会被放入全局队列中。

6.调度器的生命周期

7.Go work stealing 机制

8.Go hand off 机制

9.Go 抢占式调度

9.Sysmon有什么作用

sysmon是一个管理线程或者说守护线程,其是对GMP调度架构的补充和兜底。

GMP的调度完全是主动协作式的调度。主动协作式的调度性能很高,但是在某些情况下会出现单个goroutine长期占据时间片甚至一直占据时间片的情况。
比如:

  1. 某个goroutine不执行主动调度、不调用系统调用、不做函数调用,就会一直运行直到goroutine退出;
  2. 某个goroutine处于syscall状态时也无法触发主动调度,可能会造成该goroutine长时间占据时间片;

sysmon的作用就是处理类似上面情况,其主要的工作内容有:

  1. 定期查看netpoll有无就绪的任务,防止netpoll阻塞队列中的goroutine饥饿;
  2. 定期查看是否有p长时间(10ms)处于syscall状态,如有则将p的持有权释放以执行其他g;
  3. 定期查看是否有p长时间(10ms)没有调度,如有则对当前m发送信号,触发基于信号的异步抢占调度;

10.可视化GMP编程

方式1:go tool trace

方式2:Debug trace

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2033380.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

8.3.数据库基础技术-关系代数

并:结果是两张表中所有记录数合并,相同记录只显示一次。交:结果是两张表中相同的记录。差:S1-S2,结果是S1表中有而S2表中没有的那些记录。 笛卡尔积:S1XS2,产生的结果包括S1和S2的所有属性列,并且S1中每条记…

[C++][opencv]基于opencv实现photoshop算法色阶调整

【测试环境】 vs2019 opencv4.8.0 【效果演示】 【核心实现代码】 Levels.hpp #ifndef OPENCV2_PS_LEVELS_HPP_ #define OPENCV2_PS_LEVELS_HPP_#include "opencv2/core.hpp" #include "opencv2/imgproc.hpp" #include "opencv2/highgui.hpp&quo…

Re:从零开始的逆向笔记02day

1-C语言 参数传递 参数传递是通过堆栈的,传递的顺序是从右到左 函数返回值是存储在寄存器eax中 类型 char x -1; //0xFF 1111 1111 int y x; //0xFFFFFFFF 1111 1111 1111 1111 1111 1111 1111 1111 其余位为符号位unsigned char x -1; //0xFF 1111 1111 in…

云快充协议1.5版本的充电桩系统软件

介绍 小程序端:城市切换、附近电站、电桩详情页、扫码充电、充电中动态展示、订单支付、个人中心、会员充值、充值赠送、联系客服; 管理后台:充电数据看板、会员管理、订单管理、充值管理、场站运营、文章管理、财务管理、意见反馈、管理员管…

腾讯云COS和阿里云OSS在Springboot中的使用

引言:之前本来是用OSS做存储的,但是上线小程序发现OSS貌似消费比COS多一些,所以之前做了技术搬迁,最近想起,打算做个笔记记录一下,这里省去在阿里云注册OSS或腾讯云中注册COS应用了。 一、OSS 1、配置yml …

Linux 网络设备驱动

一.网络设备驱动框架 接收 将报文从设备驱动接受并送入协议栈 老API netif_if 编写网络设备驱动 步骤 1.注册一个网络设备 2.填充net_device_ops结构体 3.编写接收发送函数 // SPDX-License-Identifier: GPL-2.0-only /** This module emits "Hello, world"…

IOS 02 SnapKit 纯代码开发

SnapKit是一个Swift语言写的自动布局框架,可以运行到iOS,Mac系统上;OC版本的框架是Masonry,都是出自同一个团队。 用这个框架的目的是,用起来比系统自带的API方便,他内部也是对系统API进行了封装。 为什么…

房产中介小程序

本文来自:ThinkPHPFastAdmin房产中介小程序 - 源码1688 应用介绍 产中介小程序是一款基于ThinkPHPFastAdmin开发的原生微信小程序,为房地产中介提供房源管理、发布、报备客户、跟踪客户以及营销推广获客等服务的系统。 前端演示: 后台演示&am…

HarmonyOS应用开发者基础认证(三)

1、针对包含文本元素的组件,例如Text、Button、TextInput等,可以使用下列哪些属性:(全选) 答案: fontColor fontFamily fontSize fontWeight fontStyle 分析: 2、关于Tabs组件和TabContent组件&…

【高效笔记与整理的艺术】

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

通过jmeter对websocket后台做压测

后台使用java程序,通过springboot集成的stomp协议暴露websocket接口,所以下文测试过程会有特定的stomp报文,无需在意,关注流程即可 本次测试使用jmeter模拟大量用户接收群消息的场景,可覆盖连接数以及消息并发的压测 一…

CentOS7.6 RabbitMQ消息队列集群部署——实施方案

1、前期环境准备(每个主机都配置) 1.准备三台主机 IP地址主机名内存大小192.168.200.10 rabbitmq1 2G192.168.200.11rabbitmq22G192.168.200.55rabbitmq32G 2. 设置主机名 hostnamectl set-hostname 主机名suexit Ctrlr 3. 设置IP地址然后重启网卡 …

深度学习与图像修复:ADetailer插件在Stable Diffusion中的应用

文章目录 引言ADetailer插件介绍插件安装常用模型控制提示词参数配置参数详解 实践建议 示例插件的对比:1. ADetailer插件2. Photoshop插件(如Nik Collection)3. GIMP插件(如GMIC)4. Affinity Photo插件 结语 引言 无…

【物联网】(蓝牙篇)微信小程序ios如何自动打开蓝牙

微信小程序打开蓝牙的便捷之道——微信小程序ios如何自动打开蓝牙 随着智能手机蓝牙技术和物联网产品的普及,很多人在使用微信小程序时,都希望能够更便捷地打开蓝牙功能。 在iOS系统上,由于其封闭性和权限控制严格,使得自动打开蓝…

OpenGL ES->GLSurfaceView进行点、线段、三角形等基本图元的绘制

GLSurfaceView代码见OpenGL ES->顶点着色器和片段着色器代码,只修改顶点数组,片段着色器的颜色,和绘制方式进行不同图元绘制 绘制点 GL_POINTS方式 // 顶点数据 val vertices floatArrayOf(0.8f, -0.8f, 0.0f,-0.8f, -0.8f, 0…

Python大数据分析——SVM模型(支持向量机)

Python大数据分析——SVM模型(支持向量机) 认知模型介绍距离计算模型思想目标函数函数与几何间隔 线性可分SVM模型目标函数函数代码 非线性可分SVM模型目标函数函数代码 示例手写体字母识别森林火灾面积预测 认知模型 介绍 超平面的理解:在…

Stable Diffusion绘画 | 进阶语法

控制提示词生效时间 使用格式1:[提示词:0-1数值] 举例:forest,lots of trees and stones,[flowers:0.7] 其中 [flowers:0.7] 表示整体画面采样值达到70%的进程以后,才开始计算花的采样。 因此,花的数量仅仅只跑了末段的30%&am…

LeetCode之回溯

1.全排列 1.1 题目 1.2 题解 LeetCode 力扣官方题解 1.3 代码 class Solution {public List<List<Integer>> permute(int[] nums) {// 创建一个空的列表 res&#xff0c;用于存储所有的排列结果List<List<Integer>> res new ArrayList<>();/…

C++入门基础:数据类型与条件判断语句

数据类型 基础数据类型 整型&#xff08;Integral Types&#xff09; int&#xff1a;基本的整型&#xff0c;大小依赖于编译器和平台&#xff0c;通常是32位或64位。 short&#xff1a;短整型&#xff0c;通常是16位。 long&#xff1a;长整型&#xff0c;大小依赖于编译…

本地部署Code Llama大模型结合Text generation Web UI远程运行LLM

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…