今天又来给大家分享ai大模型书籍了,今天是这本非常畅销的书----《Transformer自然语言处理实战》涵盖了Transformer在NLP领域的主要应用。
首先介绍Transformer模型和Hugging Face 生态系统。然后重点介绍情感分析任务以及Trainer API、Transformer的架构,并讲述了在多语言中识别文本内实体的任务,以及Transformer模型生成文本的能力,还介绍了解码策略和度量指标。
接着深入挖掘了文本摘要这个复杂的序列到序列的任务,并介绍了用于此任务的度量指标。之后聚焦于构建基于评论的问答系统,介绍如何基于Haystack进行信息检索,探讨在缺乏大量标注数据的情况下提高模型性能的方法。
最后展示如何从头开始构建和训练用于自动填充Python源代码的模型,并总结Transformer面临的挑战以及将这个模型应用于其他领域的一些新研究。
朋友们如果有需要这本《Transformer自然语言处理实战》,扫码获取~
👉CSDN大礼包🎁:《Transformer自然语言处理实战》免费分享(安全链接,放心点击)👈
如果你对NLP领域具有浓厚兴趣,想要获知目前最先进的NLP产品的原理以及训练方式,那么本书一定值得阅读。千言万语,尽在书中。
作者简介
Lewis Tunstall是Hugging Face机器学习工程师,致力于为NLP社区开发实用工具,并帮助人们更好地使用这些工具。
Leandro von Werra是Hugging Face机器学习工程师,致力于代码生成模型的研究与社区推广工作。
Thomas Wolf是Hugging Face首席科学官兼联合创始人,他的团队肩负着促进AI研究和普及的使命。
目录
序1
前言3
第1章 欢迎来到Transformer的世界11
1.1 编码器-解码器框架12
1.2 注意力机制14
1.3 NLP的迁移学习15
1.4 Hugging FaceTransformers库:提供规范化接口18
1.5 Transformer应用概览19
1.6 Hugging Face生态系统23
1.7 Transformer的主要挑战27
1.8 本章小结27
第2章 文本分类29
2.1 数据集30
2.2 将文本转换成词元36
2.3 训练文本分类器44
2.4 本章小结60
第3章 Transformer架构剖析62
3.1 Transformer架构62
3.2 编码器64
3.3 解码器79
3.4 认识Transformer81
3.5本章小结87
第4章 多语言命名实体识别88
4.1 数据集89
4.2 多语言Transformer93
4.3 多语言词元化技术94
4.4 命名实体识别中的Transformers96
4.5 自定义Hugging Face Transformers库模型类98
4.6 NER的词元化103
4.7 性能度量105
4.8 微调XLM-RoBERTa106
4.9 错误分析108
4.10 跨语言迁移114
4.11 用模型小部件进行交互120
4.12 本章小结121
第5章 文本生成122
5.1 生成连贯文本的挑战123
5.2 贪婪搜索解码125
5.3 束搜索解码129
5.4 采样方法132
5.5 top-k和核采样134
5.6 哪种解码方法最好136
5.7 本章小结137
第6章 文本摘要138
6.1 CNN/DailyMail数据集138
6.2 文本摘要pipeline139
6.3 比较不同的摘要143
6.4 度量生成文本的质量144
6.5 在CNN/DailyMail数据集上评估PEGASUS150
6.6 训练摘要模型152
6.7 本章小结158
第7章 构建问答系统160
7.1 构建基于评论的问答系统161
7.2 评估并改进问答pipeline183
7.3 生成式问答196
7.4 本章小结199
第8章 Transformer模型调优201
8.1 以意图识别为例201
8.2 创建性能基准203
8.3 通过知识蒸馏减小模型大小208
8.4 利用量化技术使模型运算更快220
8.5 基准测试量化模型225
8.6 使用ONNX和ONNX Runtime进行推理优化226
8.7 使用权重剪枝使模型更稀疏231
8.8 本章小结235
第9章 零样本学习和少样本学习236
9.1 构建GitHub issue标记任务238
9.2 基线模型—朴素贝叶斯245
9.3 零样本学习248
9.4 少样本学习256
9.5 利用无标注数据272
9.6 本章小结278
第10章 从零训练Transformer模型280
10.1 如何寻找大型数据集281
10.2 构建词元分析器290
10.3 从零训练一个模型301
10.4 结果与分析315
10.5 本章小结319
第11章 未来发展趋势321
11.1 Transformer的扩展321
11.2 其他应用领域329
11.3 多模态的Transformer334
11.4 继续前行的建议342
朋友们如果有需要这本《Transformer自然语言处理实战》,扫码获取~
👉CSDN大礼包🎁:《Transformer自然语言处理实战》免费分享(安全链接,放心点击)👈