2024华数杯数学建模竞赛选题建议+初步分析

news2025/1/21 15:23:03

提示:DS C君认为的难度:C<A<B,开放度:A<B<C。

综合评价来看

· A题适合对机械臂和机器人运动学感兴趣的同学,尤其是有一定编程和优化算法基础的同学。不建议非相关专业同学选择。

· B题挑战较大,适合有EDA和VLSI设计基础的同学,适合对集成电路设计和算法优化有浓厚兴趣的同学。

· C题涉及数据处理和综合评价,适合喜欢数据分析和路径规划的同学,对多因素优化有兴趣的同学可以选择。推荐大部分同学进行选择

以下为ABC题选题建议及初步分析:

A题:机械臂关节角路径的优化设计

这道题目涉及到机械臂的运动学与动力学建模、路径规划以及能耗优化,是物理类题目。通过对机械臂的六个自由度关节进行优化,目标是最小化末端误差和能耗,并在一些复杂任务(如绕过障碍物)中进行路径规划和优化设计。

这道题需要深入理解机械臂的运动学和动力学,涉及非线性优化问题,还需要考虑多目标优化(末端误差和能耗),对数学建模和算法实现要求较高。

题目设定了较为具体的参数和限制,任务目标明确,但在优化方法和路径规划上具有一定的自由度。

可以使用的算法有:

· 非线性优化算法

· 遗传算法或粒子群优化算法

· 动力学仿真和路径规划算法

题目背景与简单分析:

机械臂关节角路径的优化设计题目要求针对六自由度机械臂进行路径优化,以最小化末端误差和能耗为目标。六自由度机械臂广泛应用于工业自动化和精密操作,其关节角路径的优化直接影响机械臂的精度和能效。这道题目主要解决以下几个问题:绘制六自由度机械臂的零位状态简图,建立机械臂运动数学模型,优化关节角路径以最小化末端误差和能耗,设计绕过障碍物的最优路径,以及处理多次货物抓取任务的路径优化。

建模过程

  1. 绘制机械臂零位状态简图:根据题目提供的Denavit-Hartenberg(D-H)参数,绘制六自由度机械臂的初始位置图。D-H参数包括关节的初始位置和角度等,用于定义机械臂的几何结构。

  2. 建立机械臂运动数学模型:根据D-H参数和机械臂的几何结构,建立机械臂的正运动学模型,计算各关节角度变化对机械臂末端位置的影响。同时,建立逆运动学模型,用于计算给定末端位置下所需的关节角度。

  3. 优化关节角路径:目标是最小化末端误差和能耗。末端误差是指机械臂末端位置与目标位置之间的偏差,能耗包括关节转动和机械臂克服重力势能所做的功。构建目标函数,将末端误差和能耗作为优化目标,应用非线性优化算法进行路径优化。

  4. 绕过障碍物的路径优化:在已有模型基础上,引入障碍物约束,设计最优底座移动路径和关节角路径。使用栅格地图表示障碍物和自由空间,应用路径规划算法(如A*算法)计算最优路径。

  5. 多次货物抓取任务的路径优化:处理多个任务点的路径优化问题,结合末端误差和能耗优化目标,设计出最优的路径规划方案。

推荐算法

  1. 非线性优化算法:如梯度下降法、牛顿法、共轭梯度法等,用于解决关节角路径优化中的非线性优化问题。这些算法能够高效地找到最优解,最小化末端误差和能耗。

  2. 遗传算法(GA):适用于复杂的多目标优化问题。遗传算法通过模拟自然选择过程,迭代优化机械臂的路径,找到使末端误差和能耗最小化的解。

  3. 粒子群优化算法(PSO):一种全局优化算法,通过模拟鸟群觅食行为,找到全局最优路径。粒子群优化算法特别适用于多维空间的优化问题,在机械臂路径优化中表现出色。

  4. A*算法:用于路径规划和绕过障碍物问题。A*算法通过启发式搜索,找到从起点到目标点的最优路径,适用于栅格地图中的路径规划。

  5. 逆运动学算法:如Jacobian逆矩阵法,用于计算机械臂末端位置对应的关节角度,确保路径优化过程中关节角度的合理性。

B题:VLSI电路单元的自动布局

这道题目主要是解决超大规模集成电路(VLSI)设计中的全局布局问题,目标是最小化电路单元之间的总连接线长,同时满足单元密度约束。涉及到HPWL(半周长线长)和RSMT(直线型斯坦纳最小树)两种线长估计方法。

VLSI布局是一个NP难问题,涉及复杂的优化和计算,需要掌握EDA工具的原理,并具备较强的算法设计和编程能力。

适合电子工程、电气自动化、集成电路设计与集成系统等专业的同学选择。

题目提供了较为详细的输入输出要求,但在具体算法实现和优化方法上有较大的自由度。

可以使用以下的方法:

· 线长估计模型(HPWL和RSMT)

· 全局布局和详细布局算法

· 密度计算和优化算法

题目背景与简单分析:

VLSI电路单元的自动布局问题是电子设计自动化(EDA)中的一个核心问题。随着集成电路设计复杂度的增加,自动布局已成为实现高效VLSI设计的关键。题目要求在矩形布局区域内确定所有电路单元的位置,以最小化单元之间的总连接线长,同时满足单元密度约束。这个问题分为全局布局和详细布局两个步骤。全局布局大致确定电路单元的位置,允许单元重叠;详细布局则消除重叠并进一步优化。题目还涉及半周长线长(HPWL)和直线型斯坦纳最小树(RSMT)两种线长估计方法。

建模过程

  1. 线长评估模型:利用题目提供的信息,设计一个与电路单元连线接口坐标相关的线长评估模型。该模型应满足:(1)每组估计线长与对应RSMT的差值尽可能小;(2)能应用于评估附件1中的总连接线长。通过分析电路单元之间的连线接口坐标,计算HPWL和RSMT线长,比较两者的差异,调整模型参数以提高估计精度。

  2. 网格密度评估模型:根据布局区域的尺寸、网格划分粒度和密度阈值,设计一个与电路单元坐标相关的网格密度评估模型。将布局区域划分为若干网格,计算每个网格的单元密度,确保其不超过特定阈值。结合线长评估模型,建立一个数学模型,以最小化总连接线长为目标,同时满足单元密度约束。

  3. 全局布局优化:应用上述模型完成全局布局,输出总连接线长(HPWL),并可视化结果(电路单元的位置)。使用优化算法在满足密度约束的前提下,调整电路单元的位置,最小化总连接线长。

  4. 布线密度模型改进:分析现有网格布线密度计算模型的问题,提出改进方案。应用改进后的布线密度模型,计算更新后的全局布局结果的布线密度,并对结果进行可视化。

  5. 综合优化模型:在全局布局和布线密度模型的基础上,修正数学模型,综合考虑最小化总连接线长和满足单元密度约束的同时,使网格布线密度的最大值越小。应用修正后的模型完成全局布局,输出总连接线长和网格布线密度,并进行可视化展示。

推荐算法

  1. 模拟退火算法:用于全局布局优化。模拟退火算法通过模拟物理退火过程,在初始高温状态下接受次优解,逐步降低温度,找到全局最优解。适用于大规模优化问题,能够有效避免陷入局部最优。

  2. 遗传算法(GA):适用于复杂优化问题。遗传算法通过模拟自然选择和遗传变异过程,迭代优化电路单元的位置,最小化总连接线长。遗传算法具有良好的全局搜索能力,适合处理高维度优化问题。

  3. 粒子群优化算法(PSO):模拟鸟群觅食行为,适用于全局布局优化。PSO算法通过调整粒子的位置和速度,找到全局最优布局。适用于连续空间的优化问题,能够有效处理电路单元的位置优化。

  4. 启发式搜索算法:如A*算法,用于布线密度优化。启发式搜索算法通过估计当前状态到目标状态的代价,找到最优路径,适用于路径规划和布线优化。

  5. 线性规划(LP):用于解决网格密度约束问题。通过建立线性约束条件,使用线性规划方法优化电路单元的位置,确保每个网格的单元密度不超过特定阈值。

C题:老外游中国

这道题目需要建立模型解决外国游客在中国游览时的最优旅游路线规划问题,综合考虑多个城市景点的评分、交通便利性、旅游花费等因素。涉及到组合优化、路径规划和多目标优化。

题目需要处理大规模数据集(352个城市,每个城市100个景点),并结合多种因素进行优化,对数据处理和优化算法有较高的要求。

适合大部分专业的同学选择。

题目设定了多个具体问题,但在模型建立和算法选择上有较大的自由度。

需要用到的算法

  • 数据处理与分析算法

  • 旅行商问题(TSP)算法

  • 多目标优化算法

题目背景与简单分析:

这道题目是比赛的热门题目,是很多同学在训练的时候经常做的题目类型了,属于数据分析类题目,同时也是团队擅长的题目。需要一定的建模能力,和其他赛事赛题类型类似,建议大家(各个专业均可)进行选择。这道题目开放度适中,难度较易,是本次比赛获奖的首选题目。推荐所有专业同学选择门槛较低且开放度也相对较高。(这道题目会制作我们的原创论文)

C题要求建立模型,为外国游客在中国的144小时内规划最佳旅游路线。该问题包含多个子问题,包括确定全国最高评分的景点、综合评价城市吸引力、规划旅游路线以及个性化定制旅游方案。题目涉及数据处理、评价指标建立、路径优化和多目标决策等多方面内容。

建模过程

  1. 数据预处理:首先处理提供的352个城市的旅游景点数据,每个城市有100个景点。清洗数据,提取有用信息(如景点评分、游玩时长、门票信息等)。根据评分选出每个城市的最佳景点,并计算全国景点评分的最高分(BS)。

  2. 城市综合评价模型:建立城市综合评价指标,考虑城市规模、环保、人文底蕴、交通便利性、气候和美食等因素。可以采用层次分析法(AHP)或德尔菲法等多准则决策方法,为每个城市分配权重并计算综合评分,选出最吸引外国游客的50个城市。

  3. 旅游路线规划:

  • 问题3:针对外国游客从广州入境,在144小时内游玩尽可能多的城市,使用旅行商问题(TSP)模型。结合高铁交通时间和票价信息,构建路径优化模型,目标是最大化游玩城市数量和综合游玩体验。应用蚁群算法(ACO)或遗传算法(GA)优化路线,计算总花费时间、费用和游玩景点数量。

  • 问题4:在上述模型基础上,增加费用最小化目标,重新优化路线。采用多目标优化算法(如NSGA-II)在时间和费用之间找到平衡点,提供优化方案。

  1. 个性化定制旅游方案:

  • 问题5:为只想游览山景的游客定制路线,从全国352个城市中选择评分最高的山景景点。结合高铁交通信息,使用启发式搜索算法(如A*算法)规划路线,目标是最大化游玩山景数量并最小化总费用。优化模型需考虑交通时间、门票和住宿费用。

推荐算法

  1. 层次分析法(AHP):用于城市综合评价。AHP通过构建层次结构,将复杂问题分解为若干层次,进行两两比较,计算各因素的权重,最终得出综合评分。

  2. 蚁群算法(ACO):适用于旅行商问题(TSP)的旅游路线规划。ACO模拟蚂蚁觅食行为,通过信息素更新和路径选择,寻找最优路线,最大化游玩城市数量。

  3. 遗传算法(GA):用于多目标优化和路径规划。GA通过模拟自然选择和遗传变异,迭代优化路线,适用于处理复杂的多目标优化问题。

  4. 非支配排序遗传算法II(NSGA-II):用于多目标优化。NSGA-II通过非支配排序和拥挤距离计算,找到一组Pareto最优解,适用于同时优化时间和费用。

  5. 启发式搜索算法(A)**:用于个性化定制旅游路线规划。A算法结合启发式估计,找到从起点到终点的最优路径,适用于路径规划和最短路径问题。

其中更详细的思路,各题目思路、代码、讲解视频、成品论文及其他相关内容,可以点击下方群名片哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1978478.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

红黑树的概念及应用

参考文章&#xff1a;红黑树c实现 一.红黑树是什么 红黑树是一种自平衡二叉查找树&#xff0c;是计算机科学领域中的一种数据结构&#xff0c;典型的用途是实现关联数组&#xff0c;存储有序的数据。它可以在O(logn)时间内做查找&#xff0c;插入和删除&#xff0c;这里的n是树…

Docker Remote API 未授权访问漏洞

Docker Remote API 未授权访问漏洞 Docker是一个开源的应用容器引擎&#xff0c;让开发者可以打包他们的应用以及依赖包到一个可移植的容器中&#xff0c;然后发布到任何流行的LINUX机器上&#xff0c;也可以实现虚拟化。 Docker swarm 是一个将docker集群变成单一虚拟的docker…

LeetCode刷题笔记 | 643 | 子数组最大平均数 | 双指针 | 滑动窗口 | 数组 | Java | 详细注释 | 三种解法

&#x1f64b;大家好&#xff01;我是毛毛张! &#x1f308;个人首页&#xff1a; 神马都会亿点点的毛毛张 双指针在一定条件下可以转化成滑动窗口&#xff0c;这道题就是个很好的例子 LeetCode链接&#xff1a;643. 子数组最大平均数 I 1.题目描述 给你一个由 n 个元素组成…

SpringMVC 工作流程简述

SpringMVC 工作流程简述 1. 请求接收2. 请求解析3. 查找处理器4. 处理器适配5. 调用处理器6. 处理结果7. 结果传递8. 视图解析9. 视图渲染10. 响应用户 &#x1f496;The Begin&#x1f496;点点关注&#xff0c;收藏不迷路&#x1f496; #mermaid-svg-xZqkXNPjG0SH5tMA {font-…

经典算法KMP讲解,包含C++解法ACM模式

写在前面&#xff1a;一个人能走的多远不在于他在顺境时能走的多快&#xff0c;而在于他在逆境时多久能找到曾经的自己。——KMP 讲解前置知识模拟next的构建匹配思路匹配字符串构建next数组 模板代码 题目一&#xff1a;KMP字符串题目二&#xff1a;找出字符串中第一个匹配项的…

电脑开机启动项管理小工具,绿色免安装

HiBit Startup Manager 是一款功能强大的启动项管理工具&#xff0c;旨在帮助用户管理和优化计算机的自动启动程序。该软件通过添加或删除应用程序、编辑它们的属性以及管理流程、服务、任务调度程序和上下文菜单来实现这一目标。 HiBit Startup Manager 提供了以下主要功能&a…

Day82 代码随想录打卡|贪心算法篇---K次取反后最大化的数组和

题目&#xff08;leecode T1005&#xff09;&#xff1a; 给你一个整数数组 nums 和一个整数 k &#xff0c;按以下方法修改该数组&#xff1a; 选择某个下标 i 并将 nums[i] 替换为 -nums[i] 。 重复这个过程恰好 k 次。可以多次选择同一个下标 i 。 以这种方式修改数组后…

【C++】第一讲:入门概论

个人主页&#xff1a; 深情秋刀鱼-CSDN博客 C专栏&#xff1a;C程序设计 一、C发展历史 C的起源可以追溯到1979年&#xff0c;当时Bjarne Stroustrup(本贾尼斯特劳斯特卢普&#xff0c;这个翻译的名字不 同的地⽅可能有差异)在⻉尔实验室从事计算机科学和软件⼯程的研究⼯作。…

Linux中NFS配置

文章目录 一、NFS介绍1.1、NFS的工作流程1.2、NFS主要涉及的软件包1.3、NFS的主要配置文件 二、安装NFS2.1、更新yum2.2、安装NFS服务2.3、配置NFS服务器2.4、启动NFS服务2.5、配置防火墙&#xff08;如果启用了防火墙&#xff0c;需要允许NFS相关的端口通过&#xff09;2.6、生…

最新版Sonible Plugins Bundle v2024 winmac,简单智能,持续更新长期有效

一。Sonible Plugins Bundle v2024 win&mac Sonible Plugins Bundle是一款以创作者为中心的智能音频插件系列。这些工具的特点是易于使用&#xff0c;搭配高级处理和优质音质。pure:bundle的所有插件都由sonible的智能插件系列中使用的技术驱动&#xff0c;但在设计时考虑到…

论文解读(13)-StreetCLIP

原文&#xff1a; LEARNING GENERALIZED ZERO-SHOT LEARNERS FOR OPEN-DOMAIN IMAGE GEOLOCALIZATION StreetCLIP Preprint (arxiv.org) 摘要 本文的任务是Image geolocalization&#xff08;图像地理定位&#xff09; predicting the geographic coordinated of origin for …

【Material-UI】异步请求与Autocomplete的高效集成指南

文章目录 一、异步请求的两种用法1. 延迟加载&#xff08;Load on open&#xff09;实现方法 2. 动态搜索&#xff08;Search as you type&#xff09;实现方法 二、性能优化与注意事项1. 请求节流与去抖2. 禁用内置过滤3. 错误处理 三、实际应用案例&#xff1a;Google Maps P…

[数据集][目标检测]肾结石检测数据集VOC+YOLO格式1299张1类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;1299 标注数量(xml文件个数)&#xff1a;1299 标注数量(txt文件个数)&#xff1a;1299 标注…

目标跟踪那些事

目标跟踪那些事 跟踪与检测的区别 目标跟踪和目标检测是计算机视觉中的两个重要概念&#xff0c;但它们的目的和方法是不同的。 目标检测(object Detection)&#xff1a;是指在图像或视频帧中识别并定位一个或多个感兴趣的目标对象的过程 。 目标跟踪(object Tracking)&…

Java面试八股之Spring框架中使用到了哪些设计模式

Spring框架中使用到了哪些设计模式 Spring 框架是一个广泛使用的 Java 应用程序框架&#xff0c;它包含了许多设计模式的实现。以下是一些 Spring 框架中使用的设计模式&#xff1a; 工厂模式 (Factory Pattern) 描述&#xff1a;Spring 使用 BeanFactory 和 ApplicationCon…

深度优先遍历图--DFS

一. 前言 图的遍历定义&#xff1a;从已经给出的连通图中某一顶点出发&#xff0c;沿着一些边访遍图中所有的顶点&#xff0c;使每个顶点仅被访问一次&#xff0c;就叫做图的遍历&#xff0c;它是图的基本运算。 图的遍历实质&#xff1a;找每个顶点的邻接点的过程。 在找顶点…

【C语言】Top K问题【建小堆】

前言 TopK问题&#xff1a;从n个数中&#xff0c;找出最大&#xff08;或最小&#xff09;的前k个数。 在我们生活中&#xff0c;经常会遇到TopK问题 比如外卖的必吃榜&#xff1b;成单的前K名&#xff1b;各种数据的最值筛选 问题分析 显然想开出40G的空间是不现实的&#…

【目标检测实验系列】YOLOv5高效涨点:基于NAMAttention规范化注意力模块,调整权重因子关注有效特征(文内附源码)

1. 文章主要内容 本篇博客主要涉及规范化注意力机制&#xff0c;融合到YOLOv5(v6.1版本&#xff0c;去掉了Focus模块)模型中&#xff0c;通过惩罚机制&#xff0c;调整特征权重因子&#xff0c;使模型更加关注有效特征&#xff0c;助力模型涨点。 2. 简要概括 论文地址&#x…

2024-08-04 C# 中 string 实用技巧级新手常见错误

文章目录 1 方法重载1.1 string.Split()1.2 string.Indexof() 2 方法对比2.1 Contains2.2 Equals2.3 字符串差值 3 StringBuilder4 换行符4.1 推荐做法4.2 换行符混合问题 5 文件路径分隔5.1 推荐做法 6 测试代码6.1 "OnlySplit()" vs "SplitWithTrim()"6.…

三十种未授权访问漏洞复现 合集( 二 )

未授权访问漏洞介绍 未授权访问可以理解为需要安全配置或权限认证的地址、授权页面存在缺陷&#xff0c;导致其他用户可以直接访问&#xff0c;从而引发重要权限可被操作、数据库、网站目录等敏感信息泄露。---->目录遍历 目前主要存在未授权访问漏洞的有:NFS服务&a…