设计模式 - Singleton pattern 单例模式

news2024/11/13 20:32:40

文章目录

  • 定义
  • 单例模式的实现构成
    • 构成
    • UML图
  • 单例模式的六种实现
    • 懒汉式-线程不安全
    • 懒汉式-线程安全
    • 饿汉式-线程安全
    • 双重校验锁-线程安全
    • 静态内部类实现
    • 枚举实现
  • 总结
  • 其他设计模式文章:
  • 最后

定义

在这里插入图片描述

单例模式是一种创建型设计模式,它用来保证一个类只有一个实例, 并且提供一个访问该实例的全局节点。其在很多场景中都有应用,比如数据库连接池、日志记录器、Spring中对象的创建等。

总的来说,单例模式在需要控制实例数量、确保全局唯一性的场景中被广泛应用。单例模式通过限制类的实例化对象为一个,可以确保全局唯一性的场景中被广泛应用,从而有助于控制资源访问、简化全局访问点、减少内存占用等,在很多情况下都可以提升程序的运行效率。

单例模式的实现构成

构成

一个私有的构造函数、一个私有的静态变量以及一个共有的静态函数。

其中,私有构造函数保证了其他线程不能通过new来创建对象实例,而共有的静态函数则是用来后续所有对此函数的调用都返回唯一的私有静态变量。

UML图

在这里插入图片描述

单例模式的六种实现

懒汉式-线程不安全

下面实现中,instance 被延迟实例化,这样的话,当没有使用到这个类的话,就会节约资源,不会实例化 LazySingletonsAreNotSafe

但是该实现是线程不安全的,因为在多线程环境下,可以有多个线程同时进入 getInstance 方法,并且这个时候 instance 还未实例化,那么它们就都可以进入到 if 逻辑中,执行实例化操作,从而导致线程不安全问题。

public class LazySingletonsAreNotSafe {
    private static LazySingletonsAreNotSafe instance;

    private LazySingletonsAreNotSafe() {}

    public static LazySingletonsAreNotSafe getInstance() {
        if (instance == null) {
            instance = new LazySingletonsAreNotSafe();
        }
        return instance;
    }
}

懒汉式-线程安全

那么,如何可以保证线程安全呢?

其实,上一个实现方式中,线程不安全就是因为 instance 的实例化被执行了很多次,所以我们只要对 getInstance 方法进行加锁,保证同一个时间点只有一个线程可以进入该方法进行实例化操作,那么就保证了线程安全问题。
实现代码如下:

public class LazySingletonsAreSafe {
    private static LazySingletonsAreSafe instance;

    private LazySingletonsAreSafe() {}

	// 关键点:synchronized进行了加锁操作,从而保证线程安全。
    public static synchronized LazySingletonsAreSafe getInstance() {
        if (instance == null) {
            instance = new LazySingletonsAreSafe();
        }
        return instance;
    }
}

饿汉式-线程安全

对于懒汉式方法,如果不加锁会导致线程安全问题,而加锁虽然会保证线程安全,但是也带来了一定程度上的性能损耗,因此可以采用饿汉式。
懒汉式线程安全问题的原因是 getInstance 方法可能被执行多次,从而导致被实例化多次。所以我们采用在类加载的时候,直接实例化 instance ,这样就会避免实例化多次的问题。

当然,因为我们一开始在类加载的时候对象就被实例化了,所以也不会有延迟实例化种可以节约资源的优点。

public class EagerSingleton {
    private static final EagerSingleton instance = new EagerSingleton();

    private EagerSingleton() {}

    public static EagerSingleton getInstance() {
        return instance;
    }
}

双重校验锁-线程安全

双重校验锁先判断 uniqueInstance 是否已经被实例化,如果没有被实例化,那么才对实例化语句进行加锁。

public class DoubleCheckedLockingSingleton {
	// 注意:volatile 修饰
    private static volatile DoubleCheckedLockingSingleton instance;

    private DoubleCheckedLockingSingleton() {}

    public static DoubleCheckedLockingSingleton getInstance() {
        if (instance == null) {
            synchronized (DoubleCheckedLockingSingleton.class) {
                if (instance == null) {
                    instance = new DoubleCheckedLockingSingleton();
                }
            }
        }
        return instance;
    }
}

问题1: 为什么两个if?

if (instance == null) {
     synchronized (DoubleCheckedLockingSingleton.class) {
         if (instance == null) {
             instance = new DoubleCheckedLockingSingleton();
         }
     }
 }

第一个if是因为:高并发场景下,还是可能有不止一个线程成功的在 instance 还未初始化的时候就进入这里了,所以他们都会走下面的逻辑,所以加了一把锁,用来保证线程安全问题。
而第二个if则是因为:等到第一个线程执行完实例化之后,它会释放锁,这样的话下一个线程就会来拿这把锁,然后进行新一轮的实例化。所以,在锁里添加了第二个if用来进行判断,避免实例化多次。

问题2: 为什么 instancevolatile 进行修饰?

private static volatile DoubleCheckedLockingSingleton instance;

这个是因为 volatile 有禁止指令重排的功能。上述代码中单例对象有的时候可能会发生空指针异常的问题。

对于instance = new DoubleCheckedLockingSingleton(); 它其实是分为三个步骤来执行的:

  1. JVM为对象分配内存
  2. 在内存中进行对象的初始化
  3. 将内存对应的地址复制给instance

假设,现在有两个线程进入到了getInstance方法,当T1线程执行实例化操作时,T2线程在进行判断。

因为instance = new DoubleCheckedLockingSingleton();操作不是原子的,所以编译器可能会进行指令的重排序,即:

  1. JVM为对象分配内存
  2. 将内存对应的地址复制给instance
  3. 在内存中进行对象的初始化

这样的话,当T1线程执行完第二步地址复制给instance的时候,T2线程去进行判断,那么instance == null则是为true,所以会直接跳到最下面 return instance。从而导致空指针问题。

volatile可以避免指令重排,所以只要用volatile修饰instance就可以避免这个问题了。
在这里插入图片描述

静态内部类实现

BillPughSingleton 类加载时,静态内部类 SingletonHolder 没有被加载进内存。只有当调用 getUniqueInstance 方法从而触发 SingletonHolder.INSTANCESingletonHolder才会被加载,进行初始化。

public class BillPughSingleton {
    private BillPughSingleton() {}

    private static class SingletonHelper {
        private static final BillPughSingleton INSTANCE = new BillPughSingleton();
    }

    public static BillPughSingleton getInstance() {
        return SingletonHelper.INSTANCE;
    }
}

枚举实现

枚举实例的创建是线程安全的,而且在任何情况下都是它一个单例。在别的几种单例中,反序列化时会重新创建对象,而枚举单例则不存在这种情况。

public enum EnumSingleton {
    INSTANCE;

    public void someMethod() {
    }
}

总结

      
1. 饿汉式

    实现:在类加载时就完成了实例化。
    特点:线程安全,实现简单;但可能会造成资源浪费,因为即使不需要使用实例,也会在类加载时创建。
      
2. 懒汉式

    实现:在第一次调用 getInstance() 方法时进行实例化。
    特点:延迟加载,节省资源;但需要在 getInstance() 方法上加锁才可以保证线程安全,会影响性能。
      
3. 双重校验锁

    实现:在 getInstance() 方法中加入两次实例检查,第二次检查前加上锁,既保证了线程安全又提高了效率。
    特点:结合了懒汉式和饿汉式的优点,既实现了延迟加载,又优化了并发性能。
      
4. 静态内部类

    实现:将单例实例放在静态内部类中,当外部类被加载时静态内部类并不会被加载,只有在首次调用 getInstance() 方法时才会加载。
    特点:既实现了延迟加载,又保证了线程安全,且不需显式同步。
      
5. 枚举

    实现:利用枚举类型的特性来保证实例的唯一性。
    特点:线程安全,简洁易读,还能防止反序列化攻击。

其他设计模式文章:

  • 设计模式 - Singleton pattern 单例模式
  • 设计模式 - Factory Method 工厂方法
  • 设计模式 - Chain Of Responsibility 责任链模式
  • 设计模式 - Template Method 模板方法
  • 设计模式 - Strategy Pattern策略模式
  • 设计模式 - Observer Pattern 观察者模式

最后

如果小伙伴们觉得我写的文章不错的话,那么请给我点点关注,我们下次见!
      在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1977097.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MATLAB优化模型(4)

一、前言 在MATLAB中,你可以使用内置的遗传算法(Genetic Algorithm)、模拟退火(Simulated Annealing)等优化工具箱函数,或者编写自定义代码来实现(Ant Colony Optimization, ACO) 蚁群算法和粒子群算法(Particle Swarm Optimization, PSO)。以下是一些基…

日撸Java三百行(day12:顺序表二)

目录 一、关于昨天的补充 1.final关键字 2.toString()方法 二、今日代码实现 1.顺序表的查找操作 2.顺序表的插入操作 3.顺序表的删除操作 4.数据测试 总结 一、关于昨天的补充 1.final关键字 public static final int MAX_LENGTH 10; 在昨天的这行代码中&#xf…

OpenCV||超详细的灰度变换和直方图修正

一、点运算 概念:点运算(也称为像素级运算或单像素操作)是指对图像中每一个像素点进行独立、相同的操作,而这些操作不会考虑像素点之间的空间关系。点处理优势也称对比度拉伸、对比度增强或灰度变换等。 目的:点运算…

操作系统|day3.锁、I/O多路复用、中断

协程 概念 协程是微线程,在子程序内部执行,可在子程序内部中断,转而执行别的子程序,在适当的时候再返回来接着执行。 优势 协程调用跟切换比线程效率高:协程执行效率极高。协程不需要多线程的锁机制,可…

项目经验分享:用4G路由器CPE接海康NVR采用国标GB28181协议TCP被动取流一段时间后设备就掉线了

最近我们在做一个生态化养殖的项目时,发现一个奇怪的现象: 项目现场由于没有有线网络,所以,我们在现场IPC接入到海康NVR之后,再通过一款4G的CPE接入到天翼云的国标GB28181视频平台;我们采用UDP协议播放NVR…

BERT模型

BERT模型是由谷歌团队于2019年提出的 Encoder-only 的 语言模型,发表于NLP顶会ACL上。原文题目为:《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》链接 在前大模型时代,BERT模型可以算是一个参数量比…

杂记123

(前提已安装了Beyond Compare4)在Everything的文件-右键菜单项里没有Beyond Compare的"选择左边文件进行比较"的现象 进过调查,LZ本机是X64位的,但是安装了x86(32位)的Everything, 切换成X64位的Everything版本就好了

数据结构之《二叉树》(中)

在数据结构之《二叉树》(上)中学习了树的相关概念,还了解的树中的二叉树的顺序结构和链式结构,在本篇中我们将重点学习二叉树中的堆的相关概念与性质,同时试着实现堆中的相关方法,一起加油吧! 1.实现顺序结构二叉树 在…

详细测评下搬瓦工香港CN2 GIA VPS

搬瓦工香港VPS分移动CMI和电信CN2 GIA两个大类,一个属于骨干网,一个属于轻负载。搬瓦工的香港CN2 GIA根据测试来看实际上是CN2 GIABGP,并非三网纯CN2 GIA。详细测评数据如下: 用FIO再给测试一下硬盘I/O,可以仔细看看数…

全网最适合入门的面向对象编程教程:31 Python的内置数据类型-对象Object和类型Type

全网最适合入门的面向对象编程教程:31 Python 的内置数据类型-对象 Object 和类型 Type 摘要: Python 中的对象和类型是一个非常重要的概念。在 Python 中,一切都是对象,包括数字、字符串、列表等,每个对象都有自己的类型。 原文链接: Fre…

WebSocket 协议介绍

前言 一.通用协议设计 参考链接 /* --------------------------------------------------------------- | 魔数 2byte | 协议版本号 1byte | 序列化算法 1byte | 报文类型 1byte | --------------------------------------------------------------- | 状态 1byte | …

前端HTML+CSS查漏补缺——仿制百度搜索首页的一些思考

在像素模仿百度搜索首页的时候,在实现的时候,遇到了一些值得记录的点。 在这个过程中,也顺便看了看百度的源码,感觉很有意思。 对了,QQ截屏里面获取到的颜色,是不大正确的,会有点误差。 这是我…

TypeError: ‘float’ object is not iterable 深度解析

TypeError: ‘float’ object is not iterable 深度解析与实战指南 在Python编程中,TypeError: float object is not iterable是一个常见的错误,通常发生在尝试对浮点数(float)进行迭代操作时。这个错误表明代码中存在类型使用不…

Study--Oracle-08-ORACLE数据备份与恢复(一)

一、ORACLE数据保护方案 1、oracle数据保护方案 2、数据库物理保护方案 oracle数据库备份可以备份到本地集群存储,也可以备份到云存储。 3、数据库逻辑数据保护方案 二、ORACLE数据体系 1、ORACLE 数据库的存储结构 2、oracle物理和逻辑存储结构 3、数据库进程 4…

OpenCV||超简略的Numpy小tip

一、基本类型 二、数组属性 三、数组迭代(了解) import numpy as np # 创建一个数组 a np.arange(6).reshape(2, 3) # 使用np.nditer遍历数组 for x in np.nditer(a): print(x) np.nditer有多个参数,用于控制迭代器的行为&#xff…

一层5x1神经网络绘制训练100轮后权重变化的图像

要完成这个任务,我们可以使用Python中的PyTorch库来建立一个简单的神经网络,网络结构只有一个输入层和一个输出层,输入层有5个节点,输出层有1个节点。训练过程中,我们将记录权重的变化,并在训练100轮后绘制…

显示学习5(基于树莓派Pico) -- 彩色LCD的驱动

和这篇也算是姊妹篇,只是一个侧重SPI协议,一个侧重显示驱动。 总线学习3--SPI-CSDN博客 驱动来自:https://github.com/boochow/MicroPython-ST7735 所以这里主要还是学习。 代码Init def __init__( self, spi, aDC, aReset, aCS) :"&…

数据结构(5.4_2)——树和森林的遍历

树的先根遍历(深度优先遍历) 若树非空,先访问根结点,再依次对每棵子树进行先根遍历 树的先根遍历序列和这棵树相应二叉树的先序序列相同。 伪代码: //树的先根遍历 void PreOrder(TreeNode* R) {if (R ! NULL) {visit(R);//访问根结点w…

【WRF安装第四期(Ubuntu)】搭建WRF编译所需系统-WRF和WPS模型的安装

WRF安装第四期:搭建WRF编译所需系统-WRF和WPS模型的安装 1 WRF的编译安装(Building WRF)1.1 进入Build_WRF文件夹1.2 下载WRFV4.01.3 解压WRF安装包1.4 安装WRF选择#1:34选择#2:32 1.5 检查WRF是否安装成功1.5.1 WRF安…

ai文案生成器,文案自动生成好简单

随着科技的不断进步,AI在各个领域中扮演着越来越重要的角色。其中,ai文案生成器的出现给广告和市场营销行业带来了一场革命。曾经需要耗费大量时间和精力的文案创作过程,如今可以通过ai文案生成器轻松自动完成。这一创新技术的出现&#xff0…