Python数值计算(12)——线性插值

news2024/11/15 9:30:53

1. 概述

插值是根据已知的数据序列(可以理解为你坐标中一系列离散的点),找到其中的规律,然后根据找到的这个规律,来对其中尚未有数据记录的点进行数值估计的方法。最简单直观的一种插值方式是线性插值,它是数学、计算机图形学等领域广泛使用的一种简单插值方法,根据已知数据点来估某一点的函数值。线性插值法的特点是简单、方便,适用于函数在某一段区间内是线性的情况,即函数在该区间内可以用一条直线来近似表示。线性插值法的优点是计算量小,缺点是对于。多个点而言在连接点出出在明显的间断点。

2. 一点数学知识

线性插值是简单直观的,假设已知坐标(x_0,y_0)(x_1,y_1),要得到[x_0,x_1]区间内某一位置x在直线上的y值,根据点斜式直线方程y-y_0=k(x-x_0),我们只需要求出斜率k即可,显然有:

k=\frac{y_1-y_0}{x_1-x_0}

则:

y-y_0=\frac{y_1-y_0}{x_1-x_0}*(x-x_0)

如果写成斜截式y=kx+b

y-y_0=\frac{y_1-y_0}{x_1-x_0}*x-\frac{y_1x_0-y_0x_1}{x_1-x_0}

当然如果x_1=x_0时,就违背了函数单一性原则(不讨论广义上的曲线)。

对于多个点(x_0,y_0),(x_1,y_1),...,(x_n,y_n),可以在每个区间段内采用分段线性插值。

3. 算法实现

3.1 单段线性插值

单段线性插值就是确定一个线性函数,然后通过函数估算其他点处的函数值。

以下定义个函数,返回一个多维数组,表示多项式的系数,并通过该返回值创建多项式,随后计算x=2.5处的值,并在图形中表示:

import numpy as np
from numpy.polynomial import Polynomial
import matplotlib.pyplot as plt

def linear_2p(x:np.ndarray,y:np.ndarray):
    k=(y[1]-y[0])/(x[1]-x[0])
    b=y[0]-k*x[0]
    return np.array([b,k])

x=np.array([2,5])
y=np.array([3,7])

coef= linear_2p(x,y) # 线性插值函数的系数
p=Polynomial(coef) # 构造多项式
print(p) # 0.33333333 + 1.33333333 x
print(p(2.5)) # 3.6666666666666665

# 绘制图形
X=np.linspace(x[0],x[1],100)
Y=p(X)
plt.plot(X,Y,'r') 
#plt.plot(x,y,’r’) 
#注:这两种在线性时绘图效果相同,
# 但是实际含义不同,前者是用多个点绘制拟合曲线,
# 后者仅用线段连接起止点
plt.plot(2.5,p(2.5),'b*')
plt.grid()
plt.show()

绘制图形如下:

如果需要计算单个点或者多个点的插值,其实不需要去计算该段的直线,也可以使用定比分点的概念:

P=(1-t)P_1+tP_2,0\leqslant t \leqslant 1

因此,插值可以使用如下函数:

def linear_2p_intp(x:np.ndarray,y:np.ndarray,w):
    t=(w-x[0])/(x[1]-x[0])
return (1-t)*y[0]+t*y[1]

例如,实现5个点的插值并显示:

x=np.array([2,5])
y=np.array([3,7])
w=np.linspace(3,4,10)
plt.plot(x,y,'r') # 简化绘图
yw=linear_2p_intp(x,y,w)
plt.plot(w,yw,'b*')
plt.grid()
plt.show()

运行效果如下:

动态演示效果如下:

3.2 多段线性插值

多段线性插值在每一段上都是两点线性插值,假设点序列(X,Y)中X为单调递增,即具有如下特点:

x_i<x_j (0 \leqslant i < j \leqslant n )

估算x=w点处的值时,首先需要定位w属于哪个区间段,x_i \leqslant w<x_{i+1}

为此,在构造该算法时,除了需要各段的函数外,还要有各段的区间信息,定义类如下:

from scipy.interpolate import PPoly
import numpy as np
from numpy.polynomial import Polynomial as P
import matplotlib.pyplot as plt

class multiSegLinearIntp:
    __coef:np.ndarray # coefficient
    __bps:np.ndarray # breakpoints
    __seg=0 # segments count
    def __init__(self,x:np.ndarray,y:np.ndarray):
        n,=x.shape
        k=np.diff(y)/np.diff(x)
        self.__coef=np.zeros((2,n-1))
        self.__coef[0,:]=y[0:-1]-k*x[0:-1]
        self.__coef[1,:]=k
        self.__bps=x.copy()
        self.__seg=n-1
    
    def __call__(self,x:np.ndarray):
        n,=x.shape
        y=np.zeros(n)
        for i in range(n):
            w=x[i]
            if w<self.__bps[0]:
                y[i]=self.__coef[0,0]+self.__coef[1,0]*w
                continue
            if w>=self.__bps[-1]:
                y[i]=self.__coef[0,-1]+self.__coef[1,-1]*w
                continue
            j=0
            while w>=self.__bps[j]:
                j+=1
            y[i]=self.__coef[0,j-1]+self.__coef[1,j-1]*w
        return y
    
    @property
    def c(self):
        return self.__coef
    @property
    def seg(self):
        return self.__seg

该类multiSegLinearIntp的构造函数将numpy.ndarray的实例x和y作为参数,内部保存各分段区间的系数,实例对象在收到传入值x后,查找x其所在的分段,并在该段返回函数的值,测试如下:

x=np.array([0,1,2,3,4,5,6,7,8,9])
y=np.array([2,4,3,3,1,5,6,3,1,0])

z=multiSegLinearIntp(x,y)
x1=np.linspace(-2,11,200)
y1=z(x1)
plt.plot(x,y,'r')
w=np.array([-2,11])
print(z(w)) #[-2. -2.]
#plt.plot(x1,y1,'b-')
#y2=np.interp(x1,x,y)
#plt.plot(x1,y2,'g*')
plt.grid()
plt.show()

x=np.array([0,1,2,3,4,5,6,7,8,9])
y=np.array([2,4,3,3,1,5,6,3,1,0])

z=multiSegLinearIntp(x,y)
x1=np.linspace(-2,11,200)
y1=z(x1)
plt.plot(x,y,'r')
w=np.array([-2,4.5,11])
yw=z(w)
print(z(w)) #[-2.  3. -2.]
plt.plot(w,yw,'b*')
plt.grid()
plt.show()

运行效果如下:

可以看到,在点x=4.5处计算的值为y=3,这是相符的,对于不在区间内的点x=-2x=11,可以看到依旧保持了这种线性关系,这就已经是外插了(extrapolation),是否要应用这种关系,需要根据实际情况判断。

动态演示效果如下:

4. 现有工具包

通过前面一节的例子,发现自己实现的多段线性插值还是挺麻烦的,有现场的工具包吗?当然。numpy中,使用numpy. Interp函数实现插值运算,其函数原型为:

numpy.interp(x, xp, fp, left=None, right=None, period=None)

其中x是待估算值的横坐标,xp,fp是已知点序列,left和right是x没有落在插值区间时的值,缺省值是left=x[0],right=x[-1],period是周期型,通常用于角坐标的插值,返回值是与x具有同样长度的多维数组。

测试如下:

x=np.array([2,5])
y=np.array([3,7])
w=np.linspace(3,4,5)
print(linear_2p_intp(x,y,w)) 
print(np.interp(w,x,y)) 
'''
输出均为[4.33333333 4.66666667 5 5.33333333 5.66666667]
'''

另外,在scipy软件包中,scipy.interpolate.interp1d类也可以实现线性插值,但是该类已经作为遗留代码,不在被更新,在以后得升级中可能会被移除,官方给的建议是使用前面提到的numpy.interp函数。以下是简单的一个示例,供参考:

x=np.array([2,5])
y=np.array([3,7])
w=np.linspace(3,4,5)
f=interp1d(x,y)
plt.plot(w,f(w),'r*-')
plt.grid()
plt.show()

运行效果为:

5. 双线性插值

双线性插值(Bilinear interpolation)是有两个变量的插值函数的线性插值扩展,其核心思想是在两个方向分别进行一次线性插值。 假如我们想得到未知函数 f在点P = (x, y)的值,假设我们已知函数 f 在Q_{11} = (x_1, y_1),Q_{12} = (x_1, y_2),Q_{21} = (x_2, y_1) ,Q_{22} = (x_2, y_2)四个点的值。首先在x方向进行线性插值,然后在y方向进行线性插值。这种插值方法并不是线性的,而是两个线性函数的乘积。线性插值的结果与插值的顺序无关。首先进行y方向的插值,然后进行x方向的插值,所得到的结果是一样的。

基本数学原理如下:

先在x方向插值:

f(R_1)=\frac{x_2-x}{x_2-x_1}f(Q_{11})+\frac{x-x_1}{x_2-x_1}f(Q_{21}),R_1=(x,y_1)\\ f(R_2)=\frac{x_2-x}{x_2-x_1}f(Q_{12})+\frac{x-x_1}{x_2-x_1}f(Q_{22}),R_2=(x,y_2)

然后在y方向插值:

f(P)=\frac{y_2-y}{y_2-y_1}f(R_1)+\frac{y-y_1}{y_2-y_1}f(R_2)

在现有工具包中,scipy.interpolate.LinearNDInterpolator可以实现该功能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1972713.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MuseTalk - 数字人唇部同步

文章目录 一、关于 MuseTalk概览新闻模型案例待办事项&#xff1a;第三方集成 二、安装构建环境mmlab 软件包下载 ffmpeg-static下载权重 三、快速入门推理使用 bbox_shift 以获得可调整的结果结合 MuseV 和 MuseTalk&#x1f195;实时推理实时推理注意事项 四、其它致谢限制引…

Taro学习记录

一、安装taro-cli 二、项目文件 三、项目搭建 1、Eslint配置 在项目生成的 .eslintrc 中进行配置 {"extends": ["taro/react"], //一个配置文件&#xff0c;可以被基础配置中的已启用的规则继承"parser": "babel/eslint-parser…

1688中国站获得工厂档案信息 API

公共参数 名称类型必须描述keyString是免费申请调用key&#xff08;必须以GET方式拼接在URL中&#xff09;secretString是调用密钥api_nameString是API接口名称&#xff08;包括在请求地址中&#xff09;[item_search,item_get,item_search_shop等]cacheString否[yes,no]默认y…

【动态规划-最大子段和】力扣1191. K 次串联后最大子数组之和

给定一个整数数组 arr 和一个整数 k &#xff0c;通过重复 k 次来修改数组。 例如&#xff0c;如果 arr [1, 2] &#xff0c; k 3 &#xff0c;那么修改后的数组将是 [1, 2, 1, 2, 1, 2] 。 返回修改后的数组中的最大的子数组之和。注意&#xff0c;子数组长度可以是 0&…

Delphi5实现多窗体

效果图 新建窗体 窗体的显现 procedure TForm2.btn2Click(Sender: TObject); beginForm1.Show;Form2.Hide; end;第一个窗体完整代码 注意引用第二个窗体 unit Unit1;interfaceusesSysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,Dialogs, Forms,Form…

《中国数据库前世今生》观影——2000年代/数据库分型及国产数据库开端

引出 《中国数据库前世今生》观影——2000年代/数据库分型及国产数据库开端 第3集&#xff1a;2000年代/数据库分型及国产数据库开端 y2k问题 千年虫&#xff0c;又叫做“计算机2000年问题”“电脑千禧年千年虫问题”或“千年危机”。缩写为“Y2K]”。是指在某些使用了计算机…

ESP8266 完结日志 2024/8/2 23:50

呼!经历这么长 的时间终于完工了, 从零开始一步一步走过来,还是有一丢丢成就感的 功能: 上传文件 控制引脚 获取信息 重启设备 清空flash 期间接触:web开发 uni-app开发 c开发 python 开发 MQTT AI很棒,棒到我任何问题都想问AI, 甚至一丢丢逻辑下的操作都期盼AI解决. 抖音也…

yolov5的学习part1

还是基础的anoconda&#xff0c;在opencv的时候就已经安装过了 此视频疑似在2020年底录制&#xff0c;因为他安装anaconda使用如下代码 bash ~/Downloads/Anaconda3-2020.07-Linux-x86_64.sh 由于版本兼容问题&#xff0c;可能要mini conda PASCAL VOC PASCAL VOC挑战赛在…

Node.js(6)——npm软件包管理

npm npm是Node.js标准的软件包管理器。 使用&#xff1a; 初始化清单文件&#xff1a;npm init-y(得到package.json文件&#xff0c;有则略过此命令)下载软件包&#xff1a;npm i 软件包名称使用软件包 示例&#xff1a; 初始状态下npm文件夹下只有server.js,下载软件包前看…

揭秘最“硬”的物质,你听说过神秘的“0”号元素吗?

“尽管我们还没有找到它,但这并不意味着它不存在。”——斯蒂芬威廉霍金 亲爱的朋友们,今天我们来探讨一个引人入胜的话题——宇宙中最坚硬的物质是什么?别急,这不是去健身房的邀请,而是一次探索宇宙奥秘的旅程。听说过神秘的“0”号元素吗?让我们一探究竟! 在浩瀚的宇…

unity2D游戏开发12单例

单例 我们先了解一种被称为单例的软件设计模式。当应用程序需要在生命周期内创建特定类的单个实例时,可以使用单例。当一个类提供了游戏中其他几个类使用的功能时,单例会很有用,例如,在Game Manager 类中协调游戏逻辑,单例可以提供对该类及其功能的公共统一访问入口。单例…

C++客户端Qt开发——多线程编程(一)

多线程编程&#xff08;一&#xff09; ①QThread 在Qt中&#xff0c;多线程的处理一般是通过QThread类来实现。 QThread代表一个在应用程序中可以独立控制的线程&#xff0c;也可以和进程中的其他线程共享数据。 QThread对象管理程序中的一个控制线程。 run() 线程的入口…

用Python插入表格到PowerPoint演示文稿

有效的信息传达是演示文稿中的重点&#xff0c;而PowerPoint演示文稿作为最广泛使用的演示工具之一&#xff0c;提供了丰富的功能来帮助演讲者实现这一目标。其中&#xff0c;在演示文稿中插入表格可以帮助观众更直观地理解数据和比较信息。通过使用Python这样的强大编程语言&a…

前端优化之图片的渐进式加载

起因&#xff1a; 在访问自己部署的前端项目的时候发现&#xff0c;背景图片加载太慢&#xff0c;并不是很美观。 这是因为&#xff0c;除了 JavaScript 和 CSS&#xff0c;网站通常还会包含大量的图片。当自己把<img> 元素添加到网站里面时&#xff0c;对应的所有图片…

计算机网络-基于PIM-DM+IGMP的组播实验配置

前面我们将IGMP协议和PIM-DM协议理论知识都学完了&#xff0c;现在开始进入实践&#xff0c;毕竟只有完成实践是最好的检验方式。IGMP是用于感知组播组成员&#xff0c;而PIM-DM是用于在域内构建组播分发树的的协议&#xff0c;本次实验使用这两项技术进行分析与实践。 一、拓扑…

操作系统与进程简单介绍

操作系统与进程 操作系统进程 操作系统 上一篇博客中介绍了操作系统到底层硬件它们之间的一个关系&#xff0c;那么还是这张图 操作系统到用户它们之间的关系又是如何的呢&#xff1f; 又回到了最根本的问题上&#xff1a;为什么要有操作系统呢&#xff1f; 1、向下管理好软…

jQuery入门(五)Ajax和json

一、Ajax 简介 AJAX(Asynchronous JavaScript And XML)&#xff1a;异步的 JavaScript 和 XML。 本身不是一种新技术&#xff0c;而是多个技术综合。用于快速创建动态网页的技术。 一般的网页如果需要更新内容&#xff0c;必需重新加载个页面。 而 AJAX 通过浏览器与服务器进行…

一篇文章读懂抖音短视频矩阵系统:核心功能与优势分析

抖音短视频矩阵系统作为当下备受欢迎的内容创作与分发平台&#xff0c;已经吸引了大量用户和创作者的关注。本文将详细介绍抖音短视频矩阵系统的核心功能与优势&#xff0c;帮助您全面了解这一强大的内容创作工具。 1. 抖音短视频矩阵系统 抖音短视频矩阵系统是一个集创作、编…

【Hot100】LeetCode—287. 寻找重复数

目录 题目1- 思路2- 实现⭐287. 寻找重复数——题解思路 3- ACM 实现 题目 原题连接&#xff1a;287. 寻找重复数 1- 思路 快慢指针 2- 实现 ⭐287. 寻找重复数——题解思路 class Solution {public int findDuplicate(int[] nums) {int slow nums[0];int fast nums[0];//…

DB-Engines Ranking 2024年8月数据库排行

DB-Engines Ranking 2024年8月数据库排行 DB-Engines排名根据数据库管理系统的受欢迎程度进行排名。排名每月更新一次。 2024年8月&#xff0c;共有423个数据库进入排行。 排行榜 前15名趋势图 关系型数据库前 10 名 键值数据库前 10 名 文档数据库前 10 名 时序数据库前 10 …