线程创建方式
1.继承Thread类
2.实现Runable接口
3.Callable接口实现有返回值的线程
(1)第一种
提供了一个类叫做Thread,此类的对象用来表示线程。创建线程并执行线程的步骤如下
1.定义一个子类继承Thread类,并重写run方法
2.创建Thread的子类对象
3.调用start方法启动线程(启动线程后,会自动执行run方法中的代码)
eg:
public class FirstThread extends Thread {
@Override
public void run() {
for (int i = 0; i < 5; i++) {
System.out.println("线程执行第"+i+"次");
}
}
}
public class ThreadTest {
public static void main(String[] args) {
Thread t = new FirstThread();
t.start();
for (int i = 0; i < 5; i++) {
System.out.println("main线程开启第"+i+"次");
}
}
}
(2)第二种
提供了一个Runnable接口,该接口中只有一个run方法,意思就是通过Runnable接口的实现类对象专门来表示线程要执行的任务。具体步骤如下
1.先写一个Runnable接口的实现类,重写run方法(这里面就是线程要执行的代码)
2.再创建一个Runnable实现类的对象
3.创建一个Thread对象,把Runnable实现类的对象传递给Thread
4.调用Thread对象的start()方法启动线程(启动后会自动执行Runnable里面的run方法)
优化:不想写Runnable实现类,可以直接创建Runnable接口的匿名内部类对象,传递给Thread对象。
public static void main(String[] args) {
Runnable r = new Runnable() {
@Override
public void run() {
for (int i = 0; i < 5; i++) {
System.out.println("创建的线程");
}
}
};
new Thread(r).start();
(3)第三种
假设线程执行完毕之后有一些数据需要返回,前面两种方式重写的run方法均没有返回结果。
JDK5提供了Callable接口和FutureTask类来创建线程,它最大的优点就是有返回值。
在Callable接口中有一个call方法,重写call方法就是线程要执行的代码,它是有返回值的。
1.先定义一个Callable接口的实现类,重写call方法
2.创建Callable实现类的对象
3.创建FutureTask类的对象,将Callable对象传递给FutureTask
4.创建Thread对象,将Future对象传递给Thread
5.调用Thread的start()方法启动线程(启动后会自动执行call方法)
等call()方法执行完之后,会自动将返回值结果封装到FutrueTask对象中
6.调用FutrueTask对的get()方法获取返回结果
假设已经有了Callable的实现类,后步骤如下:
public static void main(String[] args) throws Exception {
// 3、创建一个Callable的对象
Callable<String> call = new MyCallable(100);
// 4、把Callable的对象封装成一个FutureTask对象(任务对象)
// 未来任务对象的作用?
// 1、是一个任务对象,实现了Runnable对象.
// 2、可以在线程执行完毕之后,用未来任务对象调用get方法获取线程执行完毕后的结果。
FutureTask<String> f1 = new FutureTask<>(call);
// 5、把任务对象交给一个Thread对象
new Thread(f1).start();
Callable<String> call2 = new MyCallable(200);
FutureTask<String> f2 = new FutureTask<>(call2);
new Thread(f2).start();
// 6、获取线程执行完毕后返回的结果。
// 注意:如果执行到这儿,假如上面的线程还没有执行完毕
// 这里的代码会暂停,等待上面线程执行完毕后才会获取结果。
String rs = f1.get();
System.out.println(rs);
String rs2 = f2.get();
System.out.println(rs2);
}
多线程常用方法
先获取线程对象(currentThread())才能进行线程相关操作。
线程安全问题
多个线程同时操作同一个共享资源的时候,可能会出现业务安全问题。 (取钱问题)
线程同步方案
每次只允许一个线程加锁,加锁后才能进入访问,访问完毕后自动释放锁,然后其他线程才能再加锁进来。
加锁提供了三种方案
1.同步代码块
2.同步方法
3.Lock锁
同步代码块
访问共享数据的代码放入
//锁对象:必须是一个唯一的对象(同一个地址)
synchronized(锁对象){
//...访问共享数据的代码...
}
示例:
// 先搞清楚是谁来取钱?
String name = Thread.currentThread().getName();
// 1、判断余额是否足够
// this正好代表共享资源!
synchronized (this) {
if(this.money >= money){
System.out.println(name + "来取钱" + money + "成功!");
this.money -= money;
System.out.println(name + "来取钱后,余额剩余:" + this.money);
}else {
System.out.println(name + "来取钱:余额不足~");
}
}
对象选择问题
1.建议把共享资源作为锁对象, 不要将随便无关的对象当做锁对象
2.对于实例方法,建议使用this作为锁对象
3.对于静态方法,建议把类的字节码(类名.class)当做锁对象
同步方法
同步方法,就是把整个方法给锁住,一个线程调用这个方法,另一个线程调用的时候就执行不了,只有等上一个线程调用结束,下一个线程调用才能继续执行。
// 同步方法
public synchronized void drawMoney(double money) {
// 先搞清楚是谁来取钱?
String name = Thread.currentThread().getName();
// 1、判断余额是否足够
if(this.money >= money){
System.out.println(name + "来取钱" + money + "成功!");
this.money -= money;
System.out.println(name + "来取钱后,余额剩余:" + this.money);
}else {
System.out.println(name + "来取钱:余额不足~");
}
}
同步方法也是有锁对象,只不过这个锁对象没有显示的写出来而已。
1.对于实例方法,锁对象其实是this(也就是方法的调用者)
2.对于静态方法,锁对象时类的字节码对象(类名.class)
区别
1.不存在哪个好与不好,只是一个锁住的范围大,一个范围小
2.同步方法是将方法中所有的代码锁住
3.同步代码块是将方法中的部分代码锁住
Lock锁
Lock锁是JDK5版本专门提供的一种锁对象,通过这个锁对象的方法来达到加锁,和释放锁的目的,使用起来更加灵活。格式如下:
1.首先在成员变量位置,需要创建一个Lock接口的实现类对象(这个对象就是锁对象)
private final Lock lk = new ReentrantLock();
2.在需要上锁的地方加入下面的代码
lk.lock(); // 加锁
//...中间是被锁住的代码...
lk.unlock(); // 解锁
线程通信
当多个线程共同操作共享资源时,线程间通过某种方式互相告知自己的状态,以相互协调,避免无效的资源挣抢。
线程通信的常见模式:是生产者与消费者模型
线程池
线程池就是一个可以复用线程的技术。
场景:
假设:用户每次发起一个请求给后台,后台就创建一个新的线程来处理,下次新的任务过来肯定也会创建新的线程,如果用户量非常大,创建的线程也讲越来越多。然而,创建线程是开销很大的,并且请求过多时,会严重影响系统性能。而使用线程池,就可以解决上面的问题。
创建线程池
在JDK5版本中提供了代表线程池的接口ExecutorService,而这个接口下有一个实现类叫ThreadPoolExecutor类,使用ThreadPoolExecutor类就可以用来创建线程池对象。
创建线程池对象实例:
ExecutorService pool = new ThreadPoolExecutor(
3, //核心线程数有3个
5, //最大线程数有5个。 临时线程数=最大线程数-核心线程数=5-3=2
8, //临时线程存活的时间8秒。 意思是临时线程8秒没有任务执行,就会被销毁掉。
TimeUnit.SECONDS,//时间单位(秒)
new ArrayBlockingQueue<>(4), //任务阻塞队列,没有来得及执行的任务在,任务队列中等待
Executors.defaultThreadFactory(), //用于创建线程的工厂对象
new ThreadPoolExecutor.CallerRunsPolicy() //拒绝策略
);
临时线程什么时候创建?
新任务提交时,发现核心线程都在忙、任务队列满了、并且还可以创建临时线程,此时会创建临时线程。什么时候开始拒绝新的任务?
核心线程和临时线程都在忙、任务队列也满了、新任务过来时才会开始拒绝任务。
线程池执行Callable/Runable任务
实例(前提:线程任务类已准备好):
ExecutorService pool = new ThreadPoolExecutor(
3, //核心线程数有3个
5, //最大线程数有5个。 临时线程数=最大线程数-核心线程数=5-3=2
8, //临时线程存活的时间8秒。 意思是临时线程8秒没有任务执行,就会被销毁掉。
TimeUnit.SECONDS,//时间单位(秒)
new ArrayBlockingQueue<>(4), //任务阻塞队列,没有来得及执行的任务在,任务队列中等待
Executors.defaultThreadFactory(), //用于创建线程的工厂对象
new ThreadPoolExecutor.CallerRunsPolicy() //拒绝策略
);
Runnable target = new MyRunnable();
pool.execute(target); // 线程池会自动创建一个新线程,自动处理这个任务,自动执行的!
pool.execute(target); // 线程池会自动创建一个新线程,自动处理这个任务,自动执行的!
pool.execute(target); // 线程池会自动创建一个新线程,自动处理这个任务,自动执行的!
//下面4个任务在任务队列里排队
pool.execute(target);
pool.execute(target);
pool.execute(target);
pool.execute(target);
//下面2个任务,会被临时线程的创建时机了
pool.execute(target);
pool.execute(target);
// 到了新任务的拒绝时机了!
pool.execute(target);
线程池工具类(Executors)
快捷的创建不同特点的线程池,不推荐使用!!!
不推荐使用原因
线程生命周期
NEW: 新建状态,线程还没有启动
RUNNABLE: 可以运行状态,线程调用了start()方法后处于这个状态
BLOCKED: 锁阻塞状态,没有获取到锁处于这个状态
WAITING: 无限等待状态,线程执行时被调用了wait方法处于这个状态
TIMED_WAITING: 计时等待状态,线程执行时被调用了sleep(毫秒)或者wait(毫秒)方法处于这个状态
TERMINATED: 终止状态, 线程执行完毕或者遇到异常时,处于这个状态。