MIT-离散数学笔记

news2024/11/14 11:54:09

离散数学

  • Proposition
    • Ex 1:
    • Ex 2:
    • Ex 3:
    • Ex 4:
    • Ex 5:
    • Ex 6:
    • Ex 7:
    • Ex 8:

Proposition

In mathematics, we have a mathematical proof is a verification of a proposition by a chain of logical deductions from a set of axioms.

在数学中,数学证明是通过一组公理的一系列逻辑演绎来验证一个命题。

Def: A proposition is a statement that is either True or False.

Ex 1:

2 + 3 = 5 2 + 3 = 5 2+3=5


Ex 2:

∀ n ∈ N , p = n 2 + n + 41 \forall n \in N, p = n^2 + n + 41 nN,p=n2+n+41
p is a prime number.

N = {0,1,2,3,…}, Natural numbers

'p is a prime number ’ is a predicate(断言)

a predicate is a proposition whose truth depends one the value of a variable – in this case n.

if n = {0,1,2,3,…,39} p is prime

but
if n = 40, then 40 * 40 + 40 + 41 = 41 * 41, not a prime
if n = 41, then 41 * 41 + 41 + 41 = 41 * 43, not a prime


Ex 3:

a 4 + b 4 + c 4 = d 4 a^4 + b^4 + c^4 = d^4 a4+b4+c4=d4
has no positive integer solutions.

Now, this proposition was conjectured to be true by Euler in 1769.
Euler’s a big honcho in math, It was unsolved for over 2 centuries.Mathematicians worked on it. It was finally disapproved by a very clever fellow named Noam Elkies 218 years later after it was conjectured. And he came up with this:
a = 95800
b = 217519
c = 414560
d = 422481

在这里插入图片描述

∴ ∃ a , b , c , d ∈ N + , a 4 + b 4 + c 4 = d 4 \therefore \exist a,b,c,d \in N^+, a^4 + b^4 + c^4 = d^4 a,b,c,dN+,a4+b4+c4=d4

It took a long time to figure out that actually there was a solution here. Obviously, everything they tried until that time failed. Let me give you another one.


Ex 4:

313 ( x 3 + y 3 ) = z 3 313(x^3 + y^3) = z^3 313(x3+y3)=z3
has no positive integer solutions.

it’s false.

This equation is an example of what’s called an elliptic curve.You study these if you’re really a specialist in mathematics in graduate school, or if you work for certain three-letter agencies, because it’s central to the understanding of how to factor large integers.Ok who cares about factoring? Well, factoring is the way to break crypto systems like RSA, which are used for everything that we do electronically today. You have a PayPal account. You buy something online. You’re using SSL. They’re all using crypto systems, almost all of which are based on number theory. And in particular, they’re based on factoring. And if you can find good asolutions to things like this, or solutions to things likes this, all of a sudden, you can get an angle and a wedge on factoring. And it’s because of that that now RSA uses 1,000 digits modulus’s instead of hundred digit modulus’s like they used to use, because people figured out how to factor and how to break the crypto system. If you could break those crypto systems, well, you can’t rule the world, but it’s close.


Ex 5:

The regions in any map can be colored in four colors, so that adjacent regions have different colors.It has a long history.It was conjectured by somebody named Guthrie in 1853. He’s the first person to say this ought to be possible. And there were many false proofs over the ensuing century. One of the most convincing was a proof using pictures by Kempe in 1879, 26 years later. And this proof was believed for over a decade. until another mathematician named Heawood found a fatal flaw in the argument. Now, this proof by Kempe consisted of drawing pictures of what maps have to look like. So he started by saying, a map has to look like one of these types. And he would draw pictures of them. And then he argued that those types that he draw pictures of, it worked for. Proofs by picture are often very convincing and very wrong. And the point will to be to show you proofs by picture are generally not a good thing. Because your brain just locks in-- oh, that’s what it has to look like. And you don’t think about other ways that it might look like. Now, the four color theorem was finally proved by Appel and Taken in 1977, but they had to use a computer to check thousands of cases. Now, this was a little disturbing to mathematicians, because how do they know the computer didi the right thing? Your colleague writes a proof on the board. You can check it,. But how do you know the computer didn’t mess up, or not do some cases? Now, everybody believes it’s true now. But it’s unsatisfying.


Ex 6:

Every even integer but 2, actually, positive integer but 2, is the sum of two primes. For example, 24 is the sum of 11 and 13, which are prime.
Nobody knows if this is true or false. This is called Goldbach’s conjecture. It was conjectured by Christian Goldbach in 1742. This is a really simple proposition. And it’s amazing it’s not known.

Ex 7:

∀ n ∈ Z , n ≥ 2    ⟹    n 2 ≥ 4 \forall n \in Z, n \ge 2 \implies n^2 \ge 4 nZ,n2n24

Def: An implication p implies q is said to be true if p is false or q is true, either one. So we can write this down in terms of a truth table as follows. You have the values of p and q. And I’ll give the value of p implies q. If p is true and q is true, what about p implies q? It’s true, because q is true in the definition. If p is true and q is false? p implies q is False. if p is false q is true, p implies q is True. What about false and false? p implies q is True. So this is important to remember. False implies anything is True, which is a little strange. There’s a famous expression. If pigs could fly, I would be king. Sort of. In fact, this statement, pigs fly implies I’m king-- that’s true, because pigs don’t fly. Doesn’t matter whether or not I’m king, which I’m not.Since pigs don’t fly, even though that’s false, the implication is true.

Ex 8:

∀ n ∈ Z , n ≥ 2    ⟺    n 2 ≥ 4 \forall n \in Z, n \ge 2 \iff n^2 \ge 4 nZ,n2n24
that is False, for example: n = -3

Truth Table:

pqp => qq => pp <=>q
TTTTT
TFFTF
FTTFF
FFTTT

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1970399.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

强化学习-alphazero 算法理论

一、算法简介 简单地说&#xff0c;AlphazeroMCTS SL(策略网络价值网络) Selfplay resnet。 其中MCTS指的是蒙特卡洛树搜索&#xff0c;主要用于记录所有访问过的棋盘状态的各种属性&#xff0c;包括该状态访问次数&#xff0c;对该状平均评价分数等。 SL指监督学习算法&…

PCDN技术如何提高数据传输的可靠性?

PCDN技术通过以下方式提高数据传输的可靠性: 1.负载均衡与故障转移: PCDN系统具备负载均衡的能力&#xff0c;可以根据节点的负载情况动态分配请求&#xff0c;避免单点故障和过载情况。此外&#xff0c;当某个节点发生故障时&#xff0c;PCDN可以迅速将流量转移到其他可用节…

OpenAI推出GPT-4o长输出版版本

&#x1f989; AI新闻 &#x1f680; OpenAI推出GPT-4o长输出版版本 摘要&#xff1a;OpenAI宣布正在测试每次请求可输出最多64K tokens的GPT-4o长输出版版本&#xff0c;目前仅Alpha测试参与者可使用。该版本推理成本较高&#xff0c;定价每百万tokens输入6美元&#xff0c;…

从微架构到向量化--CPU性能优化指北

引入 定位程序性能问题&#xff0c;相信大家都有很多很好的办法&#xff0c;比如用top/uptime观察负载和CPU使用率&#xff0c;用dstat/iostat观察io情况&#xff0c;ptrace/meminfo/vmstat观察内存、上下文切换和软硬中断等等&#xff0c;但是如果具体到CPU问题&#xff0c;我…

用于跟踪个人图书馆的BookLogr

什么是 BookLogr &#xff1f; BookLogr 是一款网络应用&#xff0c;旨在帮助您轻松管理个人图书馆。这项自托管服务可确保您完全控制数据&#xff0c;提供安全且私密的方式来跟踪您拥有、阅读或希望阅读的所有书籍。您也可以选择向公众自豪地展示您的图书馆&#xff0c;与您的…

申请流量卡不通过,这是什么原因呢,又该如何解决?

在申请流量卡时&#xff0c;有些人会出现被拒绝的情况&#xff0c;你知道这是怎么回事吗&#xff1f;申请流量卡被拒绝又该如何解决呢&#xff1f;下面这些问题都给你整理下了&#xff01; ​ 常见原因&#xff1a; 1.信息有误&#xff1a;收件人/办卡人&#xff1a;必须是同一…

How to specify the LangSmith project name for each Chain?

题意&#xff1a;如何为每个链指定LangSmith项目名称&#xff1f; 问题背景&#xff1a; According to the LangSmith documentation you need to set the LANGCHAIN_PROJECT environment variable to specify the project name in langsmith. 根据LangSmith的文档&#xff0…

Vmware ubuntu20.04 虚拟文件夹

目录 1.vmware 设置 2.ubuntu设置 1.vmware 设置 设置完成后我们开机 2.ubuntu设置 我们打开终端 输入命令 vmware-hgfsclient可以看到你当前的共享文件 然后我们输入以下命令&#xff0c;用于将共享文件夹挂载到虚拟机中 sudo vmhgfs-fuse .host:/ /mnt -o nonempty -o …

(24)(24.1) FPV和仿真的机载OSD(一)

文章目录 前言 1 参数 2 第二OSD 3 屏幕和屏幕切换 4 面板项目 5 呼号面板 6 用户可编程警告 7 使用SITL测试OSD 8 OSD面板列表 前言 使用 MAX7456 型芯片的板载操作系统和基于 MSP 的外部操作系统&#xff08;包括 DJI 护目镜和使用DisplayPort 的护目镜&#xff09…

【IEEE Fellow特邀报告,JPCS独立出版】第四届电子通信与计算机科学技术国际学术会议(ECCST 2024,9月20-22)

2024年第四届电子通信与计算机科学技术国际学术会议将于2024年9月20-22日在中国上海举行。 会议旨在为从电子与通信、网络、人工智能与计算机技术研究的专家学者、工程技术人员、技术研发人员提供一个共享科研成果和前沿技术&#xff0c;了解学术发展趋势&#xff0c;拓宽研究思…

delphi 11其中改变组件以及IDE的字体大小

1、先将form的font改好。 2、保证组件的parentfont为true即可。比如edit1.parentfont&#xff1a;true procedure TForm1.Button1Click(Sender: TObject); beginif self.FontDialog1.Execute() thenbeginform1.Font:self.FontDialog1.Font;self.Edit1.ParentFont:true;end; en…

string习题:字符串最后一个单词的长度

字符串最后一个单词的长度 因为原字符串中可能会有很多个单词&#xff0c;所以我们需要寻找字符串中的最后一个" "的位置pos 接着用&#xff08;size-pos-1&#xff09;&#xff0c;这样计算出来的就是字符串中最后一个单词的长度 按照这样的逻辑&#xff0c;我们会…

MySQL 的binlog 、undolog 、redolog

Binlog (二进制日志) bin Log 作用 用于记录所有修改数据库数据的 SQL 语句或行级别的变化&#xff0c;主要用于主从复制和数据恢复。 binlog格式 STATEMENT模式&#xff1a;binlog里面记录的就是SQL语句的原文。优点是并不需要记录每一行的数据变化&#xff0c;减少了binlo…

1990-2022年 上市公司-战略差异度(原始数据、计算代码、参考文献和最终计算结果)

上市公司战略差异度是衡量企业在战略制定和实施过程中所展现的独特性和创新性的指标。它体现了公司对市场环境、行业趋势及自身能力的独特见解和战略布局。通过分析上市公司的战略差异度&#xff0c;可以深入理解企业的市场竞争策略、行业定位和发展方向。 战略差异度的重要性…

Docker镜像拉取失败解决方案

文章目录 问题及分析解决方案1.先排查DNS2.修改源3.代理配置4.重启docker服务 问题解决 问题及分析 今天我用docker拉取镜像的时候报错 error pulling image configuration: download failed after attempts6: dial tcp xxx.xx.xxx.xx:xxx: i/o timeout 连接超时大概率以下两个…

在 Mac 上进行本地 LLM 微调(M1 16GB)

适合初学者的 Python 代码演练 (ft. MLX) 欢迎来到雲闪世界。本文展示了如何使用 Google Colab 上的单个&#xff08;免费&#xff09;GPU 微调 LLM。虽然该示例&#xff08;以及许多其他示例&#xff09;可以在 Nvidia 硬件上轻松运行&#xff0c;但它们并不容易适应 M 系列 M…

Windows10点击文件夹右键卡死的解决办法

1、首先同时按下【WinR】打开运行页面&#xff0c;输入命令【regedit】按下回车或者点击确定。 2、打开注册表编辑器后&#xff0c;定位到如下位置“HKEY_CLASSES_ROOT\Directory\Background\Shellex\ContextMenuHandlers”。 3、然后在其中将所有名为“New”的文件或项全部删…

边缘计算平台模型-Gemma 2

我们生活在一个充满科技创新的时代&#xff0c;这已经成为我几乎每天都会重复的话题。这一次&#xff0c;我们带来了一个重磅消息&#xff1a;Google刚刚发布了Gemma 2&#xff0c;这是一款拥有22亿参数的指令调优模型。这意味着它已经在指令及其响应上进行了训练或微调。Gemma…

Navicat 数据传输详解(将源数据库的多个表结构与数据复制到目标数据库)

Navicat 数据传输详解&#xff08;将源数据库的多个表结构与数据复制到目标数据库&#xff09; 1.打开Navicat &#xff0c;先连接源数据库和目标数据库。2.点击工具选项卡&#xff0c;选择数据传输3.左边是源数据库&#xff0c;右边是目标数据库。4.选择要同步的表。5.开始同步…

为什么很多人都无法解决 VSCode C 系列调试问题 (经验分享 有用)

目录 个人失败案例 断点打了 (也没用) lagunch配置了 (也没用) 插件安装了 (也没用) 无中文路径 (也没用) ​编辑 失败案例分析✨ llvm-mingw 编译器为例 main.cpp launch.json 个人失败案例 你们都很棒 很优秀 &#xff0c;环境方面也正常&#xff0c;但为什么还是…