卷积神经网络随记

news2025/1/15 20:04:08

1.问题描述:一般而言,几个小滤波器卷积层的组合比一个大滤波器卷积层要好,比如层层堆叠了3个3x3的卷积层,中间含有非线性激活层,在这种排列下面,第一个卷积层中每个神经元对输入数据的感受野是3x3,第二层卷积层对第一层卷积层的感受野也是3x3,这样对于输入数据的感受野就是5x5,同样,第三层卷积层上对第二层卷积层的感受野是3x3,这样第三层卷积层对于第一层输入数据的感受野就是7x7。

问题:如何理解“对于输入数据的感受野就是5x5”“第三层卷积层对于第一层输入数据的感受野就是7x7”用计算公式说明

解答

在卷积神经网络中,感受野是指卷积神经网络每一层输出的特征图(feature map)上的像素点在输入图像上映射的区域大小。换句话说,它定义了输出特征图中的一个元素与输入图像之间的空间范围。

对于堆叠的卷积层,每一层的感受野可以通过以下公式计算:

RF_{n+1} = RF_{n}+\left ( K_{n}-1 \right )

其中,RF_{n}是第 n 层的感受野大小,K_{n} 是第 n 层的核(滤波器)大小。

以3x3的卷积层为例,如果连续堆叠3个这样的卷积层,我们可以这样计算每层的感受野:

1. 第一层卷积层使用3x3的滤波器,所以其感受野为 RF_{1} = 3 * 3 = 3
2. 第二层卷积层对第一层的输出应用另一个3x3的滤波器,因此感受野增加到 RF_{2} = RF_{1}+(K_{1}-1) = 3 + (3-1) = 5
3. 第三层卷积层再次应用一个3x3的滤波器,感受野进一步增加到 RF_{3}=RF_{2}+(k_{2}-1) = 3 + (5-1) =7

因此,第三层卷积层对于第一层输入数据的感受野是7x7,这意味着第三层的每一个元素都对应于原始输入图像中的一个7x7的区域。

这种层层堆叠小滤波器的策略可以增加网络的深度和非线性,同时保持参数数量相对较少,这通常可以提高网络的性能,因为它能够捕捉到更复杂的模式和特征。

2.问题描述:Traceback (most recent call last): File "/home/xc/PycharmProjects/Liuyafei/cnn/net.py", line 57, in <module> conv_model.add_module(layer[0], layer[1]) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torch/nn/modules/module.py", line 390, in add_module raise KeyError("module name can't contain \".\", got: {}".format(name)) KeyError: 'module name can\'t contain ".", got: layer1.conv1'

解决方法:这个错误是因为在添加模块时,模块名称不能包含"."。你可以尝试将层的名称中的"."替换为其他字符,例如下划线"_"。

conv_model = SimpleCNN()
for layer in model.named_modules():
    if isinstance(layer[1], nn.Conv2d):
        # 将层名称中的"."替换为"_"
        new_name = layer[0].replace('.', '_')
        conv_model.add_module(new_name, layer[1])

3.问题:怎么提取卷积模块,使用print打印出来

解决方法:要提取卷积模块并使用print打印出来,可以遍历模型的层,检查每一层是否为卷积层(nn.Conv2d),如果是,则打印出该层的详细信息。

import torch
import torch.nn as nn

# 假设你已经定义了一个名为model的卷积神经网络模型
model = ...

# 遍历模型的所有层
for name, module in model.named_modules():
    # 检查当前层是否为卷积层
    if isinstance(module, nn.Conv2d):
        # 打印卷积层的名称和参数
        print(f"Layer: {name}")
        print(f"Kernel size: {module.kernel_size}")
        print(f"Stride: {module.stride}")
        print(f"Padding: {module.padding}")
        print(f"Dilation: {module.dilation}")
        print(f"Groups: {module.groups}")
        print("-----")

这段代码将遍历模型的所有层,如果发现某一层是卷积层(nn.Conv2d),就会打印出该层的名称、核大小、步长、填充、扩张和分组等信息。

4.问题:/home/xc/PycharmProjects/Liuyafei/cnn/net.py:68: UserWarning: nn.init.normal is now deprecated in favor of nn.init.normal_. init.normal(m.weight.data) /home/xc/PycharmProjects/Liuyafei/cnn/net.py:69: UserWarning: nn.init.xavier_normal is now deprecated in favor of nn.init.xavier_normal_. init.xavier_normal(m.weight.data) /home/xc/PycharmProjects/Liuyafei/cnn/net.py:70: UserWarning: nn.init.kaiming_normal is now deprecated in favor of nn.init.kaiming_normal_. init.kaiming_normal(m.weight.data)

解决方法:要修改这些警告,需要将nn.init.normalnn.init.xavier_normalnn.init.kaiming_normal替换为它们的下划线版本,即nn.init.normal_nn.init.xavier_normal_nn.init.kaiming_normal_

5.问题:Traceback (most recent call last): File "/home/xc/PycharmProjects/Liuyafei/MNIST/cnn.py", line 68, in <module> model = CNN(28 * 28, 300, 100, 10) TypeError: __init__() takes 1 positional argument but 5 were given

解决方法:CNN类定义中并没有接受这些参数的构造函数。实际上,已经在__init__方法中初始化了网络的各个层,因此不需要在创建CNN对象时传递任何参数。

model = CNN()

6.问题:

Traceback (most recent call last): File "/home/xc/PycharmProjects/Liuyafei/MNIST/cnn.py", line 85, in <module> outputs = model(inputs.view(-1, 28 * 28)) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "/home/xc/PycharmProjects/Liuyafei/MNIST/cnn.py", line 42, in forward x = self.layer1(x) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torch/nn/modules/container.py", line 139, in forward input = module(input) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 457, in forward return self._conv_forward(input, self.weight, self.bias) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 453, in _conv_forward return F.conv2d(input, weight, bias, self.stride, RuntimeError: Expected 3D (unbatched) or 4D (batched) input to conv2d, but got input of size: [64, 784]

解决方法:

这个错误是因为卷积层期望输入的数据维度为3D(未批量化)或4D(批量化),但实际输入的数据维度为[64, 784]。要解决这个问题,需要将输入数据调整为正确的维度。可以通过在输入数据上添加一个额外的维度来实现这一点。

  1. 首先,确保输入数据的维度为[batch_size, channels, height, width]。在这个例子中,channels应该为1,因为MNIST数据集是灰度图像。
  2. 修改代码,将输入数据调整为正确的维度。
# 假设 inputs 是一个形状为 [batch_size, 784] 的张量
inputs = inputs.view(-1, 1, 28, 28)  # 将输入数据调整为 [batch_size, 1, 28, 28]
outputs = model(inputs)

7.问题:

Traceback (most recent call last): File "/home/xc/PycharmProjects/Liuyafei/MNIST/cnn.py", line 118, in <module> out = model(img) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "/home/xc/PycharmProjects/Liuyafei/MNIST/cnn.py", line 42, in forward x = self.layer1(x) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torch/nn/modules/container.py", line 139, in forward input = module(input) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 457, in forward return self._conv_forward(input, self.weight, self.bias) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 453, in _conv_forward return F.conv2d(input, weight, bias, self.stride, RuntimeError: Expected 3D (unbatched) or 4D (batched) input to conv2d, but got input of size: [64, 784]

解决方法:

在测试阶段,需要将输入数据调整为适合卷积层的形状。具体来说,卷积层期望的输入形状是 (batch_size, channels, height, width),而当前的输入数据形状是 (batch_size, 784)

要解决这个问题,需要在测试阶段的输入数据上添加一个通道维度。可以使用 unsqueeze() 函数来实现这一点。

# eval
eval_loss = 0
eval_acc = 0
for data in test_loader:
    img, label = data
    img = img.view(img.size(0), 1, 28, 28)  # 添加通道维度
    if torch.cuda.is_available():
        img = Variable(img).cuda()
        label = Variable(label).cuda()
    else:
        img = Variable(img)
        label = Variable(label)
    out = model(img)
    loss = criterion(out, label)
    eval_loss += loss.item() * label.size(0)
    _, pred = torch.max(out, 1)
    num_correct = (pred == label).sum()
    eval_acc += num_correct.item()

print('Test Loss: {:.6f}, ACC: {:.6f}'.format(eval_loss / (len(test_dataset)), eval_acc / (len(test_dataset))))

8.问题:

Traceback (most recent call last): File "/home/xc/anaconda3/envs/share_env/lib/python3.8/urllib/request.py", line 1354, in do_open h.request(req.get_method(), req.selector, req.data, headers, File "/home/xc/anaconda3/envs/share_env/lib/python3.8/http/client.py", line 1256, in request self._send_request(method, url, body, headers, encode_chunked) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/http/client.py", line 1302, in _send_request self.endheaders(body, encode_chunked=encode_chunked) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/http/client.py", line 1251, in endheaders self._send_output(message_body, encode_chunked=encode_chunked) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/http/client.py", line 1011, in _send_output self.send(msg) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/http/client.py", line 951, in send self.connect() File "/home/xc/anaconda3/envs/share_env/lib/python3.8/http/client.py", line 1425, in connect self.sock = self._context.wrap_socket(self.sock, File "/home/xc/anaconda3/envs/share_env/lib/python3.8/ssl.py", line 500, in wrap_socket return self.sslsocket_class._create( File "/home/xc/anaconda3/envs/share_env/lib/python3.8/ssl.py", line 1040, in _create self.do_handshake() File "/home/xc/anaconda3/envs/share_env/lib/python3.8/ssl.py", line 1309, in do_handshake self._sslobj.do_handshake()

或者这个:

Traceback (most recent call last):
  File "/home/xc/anaconda3/envs/share_env/lib/python3.8/urllib/request.py", line 1354, in do_open
    h.request(req.get_method(), req.selector, req.data, headers,
  File "/home/xc/anaconda3/envs/share_env/lib/python3.8/http/client.py", line 1256, in request
    self._send_request(method, url, body, headers, encode_chunked)
  File "/home/xc/anaconda3/envs/share_env/lib/python3.8/http/client.py", line 1302, in _send_request
    self.endheaders(body, encode_chunked=encode_chunked)
  File "/home/xc/anaconda3/envs/share_env/lib/python3.8/http/client.py", line 1251, in endheaders
    self._send_output(message_body, encode_chunked=encode_chunked)
  File "/home/xc/anaconda3/envs/share_env/lib/python3.8/http/client.py", line 1011, in _send_output
    self.send(msg)
  File "/home/xc/anaconda3/envs/share_env/lib/python3.8/http/client.py", line 951, in send
    self.connect()
  File "/home/xc/anaconda3/envs/share_env/lib/python3.8/http/client.py", line 1425, in connect
    self.sock = self._context.wrap_socket(self.sock,
  File "/home/xc/anaconda3/envs/share_env/lib/python3.8/ssl.py", line 500, in wrap_socket
    return self.sslsocket_class._create(
  File "/home/xc/anaconda3/envs/share_env/lib/python3.8/ssl.py", line 1040, in _create
    self.do_handshake()
  File "/home/xc/anaconda3/envs/share_env/lib/python3.8/ssl.py", line 1309, in do_handshake
    self._sslobj.do_handshake()
ssl.SSLCertVerificati torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=train_transform)
  File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torchvision/datasets/cifar.py", line 65, in __init__
    self.download()
  File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torchvision/datasets/cifar.py", line 141, in download
    download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.tgz_md5)
  File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torchvision/datasets/utils.py", line 446, in download_and_extract_archive
    download_url(url, download_root, filename, md5)
  File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torchvision/datasets/utils.py", line 146, in download_url
    url = _get_redirect_url(url, max_hops=max_redirect_hops)
  File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torchvision/datasets/utils.py", line 94, in _get_redirect_url
    with urllib.request.urlopen(urllib.request.Request(url, headers=headers)) as response:
  File "/home/xc/anaconda3/envs/share_env/lib/python3.8/urllib/request.py", line 222, in urlopen
    return opener.open(url, data, timeout)
  File "/home/xc/anaconda3/envs/share_env/lib/python3.8/urllib/request.py", line 525, in open
    response = self._open(req, data)
  File "/home/xc/anaconda3/envs/share_env/lib/python3.8/urllib/request.py", line 542, in _open
    result = self._call_chain(self.handle_open, protocol, protocol +
  File "/home/xc/anaconda3/envs/share_env/lib/python3.8/urllib/request.py", line 502, in _call_chain
    result = func(*args)
  File "/home/xc/anaconda3/envs/share_env/lib/python3.8/urllib/request.py", line 1397, in https_open
    return self.do_open(http.client.HTTPSConnection, req,
  File "/home/xc/anaconda3/envs/share_env/lib/python3.8/urllib/request.py", line 1357, in do_open
    raise URLError(err)
urllib.error.URLError: <urlopen error [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer certificate (_ssl.c:1131)>

进程已结束,退出代码 1

解决办法:

这个错误是由于SSL证书验证失败导致的。可以尝试在代码中禁用SSL证书验证,但请注意这样做可能会导致安全风险。如果仍然想要尝试禁用SSL证书验证,可以在创建urllib.request.urlopen对象之前添加以下代码:

import ssl
ssl._create_default_https_context = ssl._create_unverified_context

将这段代码添加到你的脚本的开头,然后再次运行脚本。

9.问题:

Downloading http://192.168.0.2:80/ac_portal/proxy.html?template=disclaimer&tabs=pwd&vlanid=0&_ID_=0&switch_url=&url=https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz&controller_type=&mac=04-7c-16-5e-85-7c to ./data/cifar-10-python.tar.gz 100%|█████████████████████████████████| 2250/2250 [00:00<00:00, 10922666.67it/s] Traceback (most recent call last): File "/home/xc/PycharmProjects/Liuyafei/cifar/resnet.py", line 25, in <module> trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=train_transform) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torchvision/datasets/cifar.py", line 65, in __init__ self.download() File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torchvision/datasets/cifar.py", line 141, in download download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.tgz_md5) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torchvision/datasets/utils.py", line 446, in download_and_extract_archive download_url(url, download_root, filename, md5) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torchvision/datasets/utils.py", line 167, in download_url raise RuntimeError("File not found or corrupted.") RuntimeError: File not found or corrupted.

这个错误表明在下载过程中出现了问题,导致文件未找到或损坏。可以尝试重新运行代码以重新下载文件。如果问题仍然存在,可能是网络连接问题或者文件链接失效。

10.问题:

Traceback (most recent call last): File "/home/xc/PycharmProjects/Liuyafei/cifar/resnet.py", line 25, in <module> trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=train_transform) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torchvision/datasets/cifar.py", line 65, in __init__ self.download() File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torchvision/datasets/cifar.py", line 141, in download download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.tgz_md5) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torchvision/datasets/utils.py", line 446, in download_and_extract_archive download_url(url, download_root, filename, md5) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torchvision/datasets/utils.py", line 146, in download_url url = _get_redirect_url(url, max_hops=max_redirect_hops) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torchvision/datasets/utils.py", line 94, in _get_redirect_url with urllib.request.urlopen(urllib.request.Request(url, headers=headers)) as response: File "/home/xc/anaconda3/envs/share_env/lib/python3.8/urllib/request.py", line 222, in urlopen return opener.open(url, data, timeout) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/urllib/request.py", line 525, in open response = self._open(req, data) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/urllib/request.py", line 542, in _open result = self._call_chain(self.handle_open, protocol, protocol + File "/home/xc/anaconda3/envs/share_env/lib/python3.8/urllib/request.py", line 502, in _call_chain result = func(*args) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/urllib/request.py", line 1397, in https_open return self.do_open(http.client.HTTPSConnection, req, File "/home/xc/anaconda3/envs/share_env/lib/python3.8/urllib/request.py", line 1358, in do_open r = h.getresponse() File "/home/xc/anaconda3/envs/share_env/lib/python3.8/http/client.py", line 1348, in getresponse response.begin() File "/home/xc/anaconda3/envs/share_env/lib/python3.8/http/client.py", line 316, in begin version, status, reason = self._read_status() File "/home/xc/anaconda3/envs/share_env/lib/python3.8/http/client.py", line 285, in _read_status raise RemoteDisconnected("Remote end closed connection without" http.client.RemoteDisconnected: Remote end closed connection without response

解决方法:

这个错误是由于在下载CIFAR-10数据集时,远程服务器关闭了连接而没有响应。这可能是由于网络问题或服务器问题导致的。你可以尝试以下方法解决这个问题:

  1. 检查你的网络连接是否正常。
  2. 确保你的防火墙或代理设置不会阻止下载。
  3. 稍后再尝试下载,可能是服务器暂时不可用。
  4. 如果问题仍然存在,可以考虑手动下载CIFAR-10数据集,然后将其解压缩到指定的目录(在这个例子中是./data)。

11.问题:

Traceback (most recent call last): File "/home/xc/anaconda3/envs/share_env/lib/python3.8/urllib/request.py", line 1354, in do_open h.request(req.get_method(), req.selector, req.data, headers, File "/home/xc/anaconda3/envs/share_env/lib/python3.8/http/client.py", line 1256, in request self._send_request(method, url, body, headers, encode_chunked) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/http/client.py", line 1302, in _send_request self.endheaders(body, encode_chunked=encode_chunked) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/http/client.py", line 1251, in endheaders self._send_output(message_body, encode_chunked=encode_chunked) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/http/client.py", line 1011, in _send_output self.send(msg) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/http/client.py", line 951, in send self.connect() File "/home/xc/anaconda3/envs/share_env/lib/python3.8/http/client.py", line 1425, in connect self.sock = self._context.wrap_socket(self.sock, File "/home/xc/anaconda3/envs/share_env/lib/python3.8/ssl.py", line 500, in wrap_socket return self.sslsocket_class._create( File "/home/xc/anaconda3/envs/share_env/lib/python3.8/ssl.py", line 1040, in _create self.do_handshake() File "/home/xc/anaconda3/envs/share_env/lib/python3.8/ssl.py", line 1309, in do_handshake self._sslobj.do_handshake() Connecti torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=train_transform) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torchvision/datasets/cifar.py", line 65, in __init__ self.download() File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torchvision/datasets/cifar.py", line 141, in download download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.tgz_md5) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torchvision/datasets/utils.py", line 446, in download_and_extract_archive download_url(url, download_root, filename, md5) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torchvision/datasets/utils.py", line 146, in download_url url = _get_redirect_url(url, max_hops=max_redirect_hops) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torchvision/datasets/utils.py", line 94, in _get_redirect_url with urllib.request.urlopen(urllib.request.Request(url, headers=headers)) as response: File "/home/xc/anaconda3/envs/share_env/lib/python3.8/urllib/request.py", line 222, in urlopen return opener.open(url, data, timeout) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/urllib/request.py", line 525, in open response = self._open(req, data) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/urllib/request.py", line 542, in _open result = self._call_chain(self.handle_open, protocol, protocol + File "/home/xc/anaconda3/envs/share_env/lib/python3.8/urllib/request.py", line 502, in _call_chain result = func(*args) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/urllib/request.py", line 1397, in https_open return self.do_open(http.client.HTTPSConnection, req, File "/home/xc/anaconda3/envs/share_env/lib/python3.8/urllib/request.py", line 1357, in do_open raise URLError(err) urllib.error.URLError: <urlopen error [Errno 104] Connection reset by peer>

解决方法:

这个错误是由于在尝试下载CIFAR-10数据集时,远程服务器关闭了连接。这可能是由于网络问题或服务器问题导致的。可以尝试以下方法解决这个问题:

  1. 检查你的网络连接是否正常。
  2. 确保防火墙或代理设置不会阻止下载。
  3. 稍后再尝试下载,可能是服务器暂时不可用。
  4. 如果问题仍然存在,可以考虑手动下载CIFAR-10数据集,然后将其解压缩到指定的目录(在这个例子中是./data)。

12.问题:

通过这个网址http://192.168.0.2:80/ac_portal/proxy.html?template=disclaimer&tabs=pwd&vlanid=0&_ID_=0&switch_url=&url=https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz&controller_type=&mac=04-7c-16-5e-85-7c下载了名为“cifar-10-python.tar.gz”这个的文件,将下载的文件“cifar-10-python.tar.gz”放到当前运行文件data下面后,运行当前代码,显示以下错误:

Downloading http://192.168.0.2:80/ac_portal/proxy.html?template=disclaimer&tabs=pwd&vlanid=0&_ID_=0&switch_url=&url=https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz&controller_type=&mac=04-7c-16-5e-85-7c to ./data/cifar-10-python.tar.gz 100%|██████████████████████████████████| 2250/2250 [00:00<00:00, 9779465.28it/s] Traceback (most recent call last): File "/home/xc/PycharmProjects/Liuyafei/cifar/resnet.py", line 25, in <module> trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=train_transform) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torchvision/datasets/cifar.py", line 65, in __init__ self.download() File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torchvision/datasets/cifar.py", line 141, in download download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.tgz_md5) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torchvision/datasets/utils.py", line 446, in download_and_extract_archive download_url(url, download_root, filename, md5) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torchvision/datasets/utils.py", line 167, in download_url raise RuntimeError("File not found or corrupted.") RuntimeError: File not found or corrupted.

解决方法:

从错误信息来看,下载的文件可能已经损坏或者文件路径不正确。请尝试以下步骤:

1. 确保文件 "cifar-10-python.tar.gz" 已经被正确下载到 "./data" 目录下。
2. 如果文件不存在,请重新运行代码以下载文件。
3. 如果文件已存在但仍然出现错误,请检查文件是否完整且未损坏。可以尝试重新下载文件。
4. 确保在创建 `CIFAR10` 数据集时使用正确的文件路径。在这个例子中,文件应该位于 "./data/cifar-10-python.tar.gz"。

如果问题仍然存在,可以尝试手动下载文件并将其移动到正确的位置。以下是手动下载和解压文件的步骤:

1. 访问 https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz 并下载文件。
2. 将下载的文件移动到 "./data" 目录下。
3. 确保文件名正确(应为 "cifar-10-python.tar.gz")。
4. 解压文件:在终端中运行 `tar -xzvf ./data/cifar-10-python.tar.gz -C ./data`。
5. 重新运行代码。

13.问题:

Traceback (most recent call last): File "/home/xc/PycharmProjects/Liuyafei/cifar/resnet.py", line 67, in <module> outputs = net(inputs) File "/home/xc/anaconda3/envs/share_env/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "/home/xc/PycharmProjects/Liuyafei/cifar/resnet.py", line 46, in forward x = self.pool(F.relu(self.conv1(x))) AttributeError: 'TypeVar' object has no attribute 'relu'

解决方法:

这个错误是因为在代码中使用了`F.relu`,但是没有正确导入`torch.nn.functional`模块。要解决这个问题,需要在代码开头添加以下导入语句:

import torch.nn.functional as F

这样,`F.relu`就可以正常工作了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1968285.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Verilog语言和C语言的本质不同点是什么?

在开始前刚好我有一些资料&#xff0c;是我根据网友给的问题精心整理了一份「c语言的资料从专业入门到高级教程」&#xff0c;点个关注在评论区回复“666”之后私信回复“666”&#xff0c;全部无偿共享给大家&#xff01;&#xff01;&#xff01; 在c语言中&#xff0c;如果你…

7.Redis的Hash类型

Hash类型&#xff0c;也叫散列&#xff0c;其value是一个无序字典&#xff0c;类似于HashMap结构。 问题 String结构是将对象序列化为json字符串后存储&#xff0c;当需要修改对象某个字段是不是很方便。 key value…

【计算机遥感方向】SCI期刊推荐!水刊、顶刊齐聚在此,速投!

本期将为您带来五本计算机SCI 妥妥毕业神刊&#xff01; IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING International Journal of Applied Earth Observation and Geoinformation INTERNATIONAL JOURNAL OF REMOTE SENSING Geocarto International RADIO SCIEN…

蔚来智驾的大模型之路:自研芯片 + 世界模型 + 群体智能

作者 |德新 编辑 |王博 7月27日上周末&#xff0c;蔚来举办第二届NIO IN。 李斌说&#xff0c;2023年的第一届NIO IN像是一个大纲&#xff0c;第一次对外完整展示了蔚来布局的12大技术领域。 而这届&#xff0c;更像第一个交付的章节。它重点展示了5项阶段性的进展&#xff…

智能电池管理,soc、soh、comsol锂电池仿真

锂离子电池&#xff0c;作为能源转型与电动车市场崛起的基石&#xff0c;正迎来研发与应用的飞跃。面对繁杂设计参数与实验盲点&#xff0c;电池仿真技术&#xff0c;尤以COMSOL为代表的多物理场仿真&#xff0c;精准解析电池内部机理&#xff0c;从微观行为到宏观性能&#xf…

LoRA:大模型的轻量级高效微调方法

文章目录 1. 模型微调的两种方式2. LoRA 实现 LoRA是一种轻量化且效果非常突出的大模型微调方法&#xff0c;与使用Adam微调的GPT-3 175B相比&#xff0c;LoRA可以将可训练参数的数量减少10000倍&#xff0c;并将GPU内存需求减少3倍。 paper&#xff1a;LoRA: Low-Rank Adapta…

二维码门楼牌管理应用平台建设:流程优化与全面考量

文章目录 前言一、工作流程优化&#xff1a;移动端采集与实时更新二、数据完整性与准确性保障三、效率提升与成本节约四、扩展性与未来发展五、数据安全与隐私保护六、用户培训与技术支持 前言 随着智慧城市建设的不断深入&#xff0c;二维码门楼牌管理应用平台作为城市管理的…

电脑浏览器缓存怎么清除 Mac电脑如何清理浏览器缓存数据 macbookpro浏览器怎么清理

浏览器已经成为我们日常生活中不可或缺的工具。然而&#xff0c;随着时间的推移&#xff0c;浏览器缓存的积累可能会逐渐影响我们的上网体验&#xff0c;导致网页加载速度变慢、浏览器运行卡顿等问题。因此&#xff0c;定期清理浏览器缓存变得尤为重要。那么Mac怎么清除浏览器缓…

Springboot学习-day16

Springboot学习-day16 Springboot是spring家族中的一个全新框架&#xff0c;用来简化spring程序的创建和开发过程。在以往我们通过SpringMVCSpringMybatis框架进行开发的时候&#xff0c;我们需要配置web.xml&#xff0c;spring配置&#xff0c;mybatis配置&#xff0c;然后整…

layui+jsp框架下实现对pdf或图片预览功能

功能 对上传的文件实现预览功能&#xff0c;文件类型为图片或pdf。 效果展示 实现 引入 jQuery&#xff1a; <script src"https://code.jquery.com/jquery-3.5.1.min.js"></script>引入 Bootstrap 的 CSS 和 JavaScript&#xff1a; <link href&quo…

Java面试必看!知己知彼才能百战百胜,如何做好面试前的准备?

随着 Java 这个赛道的不断内卷&#xff0c;这两年&#xff0c;Java 程序员的面试&#xff0c;从原来的常规八股文&#xff08;有 标准答案&#xff09;到现在&#xff0c;以项目、场景问题、技术深度思考为主&#xff0c;逐步转变成没有标准答案&#xff0c; 需要大家基于自己的…

【大厂笔试】翻转、平衡、对称二叉树,最大深度、判断两棵树是否相等、另一棵树的子树

检查两棵树是否相同 100. 相同的树 - 力扣&#xff08;LeetCode&#xff09; 思路解透 两个根节点一个为空一个不为空的话&#xff0c;这两棵树就一定不一样了若两个跟节点都为空&#xff0c;则这两棵树一样当两个节点都不为空时&#xff1a; 若两个根节点的值不相同&#xff…

【时时三省】(C语言基础)函数的嵌套调用和链式访问

山不在高&#xff0c;有仙则名。水不在深&#xff0c;有龙则灵。 ——csdn时时三省 嵌套调用 每一个函数都只能在大括号的外面独立存在 不能在一个函数的里面还有一个函数 这样是不行的 函数是不能嵌套定义的 但是函数可以嵌套调用 比如在外面建立函数1&函数 然后在mai…

小区房布置超五类网线,怎么网络只有100Mbps?

前言 最近有粉丝找到小白&#xff0c;说家里的网络怎么一直都是100Mbps&#xff0c;宽带明明是1000Mbps的&#xff0c;只用了十分之一。 一开始小白以为是家里的网络使用的是两对双绞线的那种网线&#xff08;一共四芯&#xff09;。 随即她说水晶头接的都是8根&#xff0c;…

JSP分页写法

一、写界面框架&#xff1a; <html> <head><title>学生管理系统</title><style>body { font-family: 微软雅黑; background-color: #e0f7fa; margin: 0; padding: 0; display: flex; justify-content: center; align-items: center; margin-top…

log4j2漏洞练习

log4j2 是Apache的一个java日志框架&#xff0c;我们借助它进行日志相关操作管理&#xff0c;然而在2021年末log4j2爆出了远程代码执行漏洞&#xff0c;属于严重等级的漏洞。apache log4j通过定义每一条日志信息的级别能够更加细致地控制日志生成地过程&#xff0c;受影响的版本…

C++·哈希

1. unordered系列关联式容器 在C98中&#xff0c;STL提供了底层为红黑树结构的一系列关联式容器&#xff0c;在查询时效率可达到logN。后来在C11中STL又提供了4个unordered系列的关联式容器&#xff0c;这四个容器与红黑树结构的使用方法类似&#xff0c;但是底层结构不同&…

【C++】类和对象——Lesson2

Hi~&#xff01;这里是奋斗的小羊&#xff0c;很荣幸您能阅读我的文章&#xff0c;诚请评论指点&#xff0c;欢迎欢迎 ~~ &#x1f4a5;&#x1f4a5;个人主页&#xff1a;奋斗的小羊 &#x1f4a5;&#x1f4a5;所属专栏&#xff1a;C &#x1f680;本系列文章为个人学习笔记…

最全架构学习路线图,海量大厂架构案例

很多读者经常抱怨&#xff0c;工作中涉及不到太多架构设计&#xff0c;对于架构的理解少之又少。 零散地做过一些架构工作&#xff0c;但完全不知道架构设计的全流程是怎样的。 想要成长为架构师&#xff0c;缺乏系统的方法论指导。 无论是程序员&#xff0c;还是产品经理&a…

数字图像边缘曲率计算及特殊点检测

一、曲率和数字图像边缘曲率检测常用方法简介 边缘曲率作为图像边缘特征的重要参数&#xff0c;不仅反映了边缘的几何形状信息&#xff0c;还对于图像识别、图像分割、目标跟踪等任务具有显著影响。 曲线的曲率&#xff08;curvature&#xff09;就是针对曲线上某个点的切线方向…