论文阅读:基于生物神经元的模拟游戏世界感知与学习

news2024/11/26 8:22:09

论文内容概述

AI要90分钟学会的游戏,人脑细胞竟在5分钟搞定了。Cell在2022年的研究中,使用80万体外神经元细胞(DishBrain)竟然学会玩70年代经典街机游戏Pong!
神经元乒乓球实验

论文链接:In vitro neurons learn and exhibit sentience when embodied in a simulated game-world (基于生物神经元的模拟游戏世界感知学习)

虽然现在人工智能发展迅速,但是人工神经网络依然难以高效地完成许多复杂任务,而这些复杂任务往往在生物神经网络上表现优异。如果我们将生物神经网络整合到数字计算机系统中,或许可以解决当前人工神经网络面临的一些困境。

在这篇文章中,作者开发了DishBrain(盘中大脑),这是一种在结构化环境中利用神经元固有的自适应计算能力的系统。该系统使用生物神经网络(神经元为人类神经元或老鼠神经元)以高密度多电极阵列为信息交流媒介与计算机系统相结合,然后计算机系统输出模拟游戏世界的相关信号,通过电生理刺激和记录给DishBrain进行信号交互以模仿街机游戏“Pong”。

应用自由能原理的主动推理理论,作者发现,在实时游戏五分钟内出现了明显的学习现象,这是在对照条件下未观察到的。进一步的实验表明,闭环结构化反馈在引发长期学习中起着重要作用。DishBrain显示出在稀疏的感官信息反馈下,出现了以目标导向方式自组织活动的能力(称之为人工生物智能),未来的应用可能进一步揭示与智能密切的细胞关联。

准确来说,DishBrain(盘中大脑)是一个实时合成生物智能平台,演示了生物神经元通过调整放电活动来进行学习。在提供的模拟游戏世界中,当提供简单的电信号输入电信号反馈时,它有能力学习执行特定目标任务。

  • 随着实验的进行,如果没有提供电信号反馈,将观察不到明显的表现改善;如果完整提供电信号反馈,将看到因为学习而得到的表现改善。
  • 观察到的人类神经元和老鼠神经元均有学习能力,并且人类神经元的学习能力高于老鼠神经元。
  • 实验过程中观察到神经元放电活动一直在变化,一开始的游戏表现可能不太好,但随着实验的进行会越来越好。

基本原理介绍

合成生物智能SBI(Synthetic Biological Intelligence):合成生物学与人工智能交叉领域,是未来脑科学发展一个可能大热的风口,这篇论文属于SBI领域。

生物神经网络BNN(Biological Neuronal Network):生物神经网络基于动物神经元发展,人工神经网络基于神经元数学模型发展,两者原理上存在较大差异。

生物智能主要分两方面:体内生物智能体外生物智能。像脑机接口等等更多像体内生物智能,生物神经网络主要存活在生物体内;而合成生物智能更多探索体外生物智能,比如这篇文章就是体外培养生物神经网络来与计算机系统结合。

自由能原理(Free Energy Principle, FEP)是由卡尔·弗里斯顿(Karl Friston)提出的理论框架,它试图解释生物系统是如何维持其内部稳态并预测外部环境的。该理论的核心思想是,生物系统通过最小化其预测误差(即观察到的与预期的状态之间的差异)来降低自由能,从而保持生存和繁衍。

自由能的概述

自由能原理认为,所有生命系统都在不断地试图降低它们的自由能,以保持一种低熵状态,即维持内部稳态。自由能可以被视为一个代理,用来衡量一个系统与它期望状态之间的不匹配程度。当系统能够准确预测其环境时,自由能就会降低。如果系统不能准确预测,则需要通过学习或改变行为来减小预测误差,从而降低自由能。

主动推理理论

主动推理(Active Inference)是自由能原理的一个重要组成部分,它关注的是生物系统如何通过行为来影响其周围环境,以最小化预测误差。主动推理理论认为,生物系统不仅被动地适应环境,而且还通过积极的行为来塑造环境,以使自身预测更加准确。

主动推理观点

  1. 预测编码:生物系统通过构建关于世界的内部模型来进行预测,并根据这些预测采取行动。
  2. 最小化预测误差:生物系统通过感知输入和主动行为来最小化预测误差,即观察到的状态与预测状态之间的差异。
  3. 感知行为的一致性:感知和行为被视为同一过程的不同方面,都是为了最小化自由能。
  4. 行为选择:行为的选择是基于对未来状态的预测来最小化未来自由能的期望值。

主动推理应用

主动推理理论已被应用于多个领域,包括认知科学、心理学、神经科学以及人工智能。它为理解生物系统如何进行决策、规划行为以及如何与环境互动提供了理论基础。

  • 感知行为一致性:当你伸手去拿一个杯子时,你的大脑会根据过去的经历预测杯子的位置和重量。如果预测与实际感受不符(比如杯子比预期轻),你会调整握力以减少预测误差。
  • 决策制定:在面对不确定情境时,生物体会基于其内部模型对未来状态进行预测,并选择能够最大化降低未来自由能的行为路径。

实验整体设计

神经细胞获取

要想有一个生物神经网络(BNN)芯片,第一步就是获取很多的神经细胞,论文里主要使用两类神经细胞,即人类神经细胞和老鼠神经细胞,那么要怎么获得呢?

如果想要获取的是人类的神经元细胞,那么需要从干细胞开始培养,然后刺激干细胞分化成神经细胞,干细胞分化成神经细胞之后数量就会稳定了,后续实验过程只需要给人类神经细胞提供营养即可,整个神经细胞的制备周期是30天。

如果使用老鼠的神经细胞,那就比较简单了,没有道德问题,可以直接培养老鼠胚胎,然后把脑子摘出来,然后直接用就完事了,基本不需要培养,制备周期也短了很多。


左图为人类神经细胞HCC,右图为老鼠神经细胞MCC。

智能芯片生态

有了神经细胞之后,下一步就是把神经细胞放到芯片上培养,继续给神经细胞提供养分。

可以看到,该智能系统有两个子系统:细胞芯片系统HD-MEA Chip计算机系统Pong,两者通过物理线路进行信息传输。

信息交互过程

先给出细胞芯片子系统的平面图:

在图片中,神经细胞是均匀分布在芯片上面的,蓝点代表电极,用于神经细胞与计算机之间交换信息。明显图中存在上半,左下,右下三块电极区域,上半电极区域是感知区,用于接收屏幕信息输出(由此得到小球和平板的位置状态);左下和右下电极区域是运动区,用于输出平板移动信息,具体设置如下:

action1为向上运动,action为向下运动,左下电极区域得到一组向上运动和向下运动的信号,右下电极区域得到另一组向上运动和向下运动的信号,两组数据求平均得到最终的运动控制信号。

实验过程分析

学习方法的原理特别简单,就是不停的让这个生物芯片玩Pong这个游戏,并且在玩的好的时候奖励它,玩的不好(没接住球)的时候惩罚他。

当BNN犯了一个错误的时候,比如没有接到球的时候,就给他一些无法预测的电信号惩罚他(可能是随机生成);而当BNN接住了球的时候,那应该奖励他,就给他一些可以预测的电信号(可能是固定模式)。

相关参考资料

https://www.cell.com/neuron/pdfExtended/S0896-6273(22)00806-6
https://zhuanlan.zhihu.com/p/648547119
https://baijiahao.baidu.com/s?id=1746550954055561171&wfr=spider&for=pc

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1962383.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

HCIA总结

一、情景再现:ISP网络为学校提供了DNS服务,所以,DNS服务器驻留在ISP网络内,而不再学校网络内。DHCP服务器运行在学校网络的路由器上 小明拿了一台电脑,通过网线,接入到校园网内部。其目的是为了访问谷歌网站…

ctfshow 权限维持 web670--web679

web670 <?php// 题目说明&#xff1a; // 想办法维持权限&#xff0c;确定无误后提交check&#xff0c;通过check后&#xff0c;才会生成flag&#xff0c;此前flag不存在error_reporting(0); highlight_file(__FILE__);$a$_GET[action];switch($a){case cmd:eval($_POST[c…

2024年技校云计算实验室建设及云计算实训平台整体解决方案

随着信息技术的飞速发展&#xff0c;云计算已成为推动数字化转型的关键力量。技校作为培养技能型人才的摇篮&#xff0c;建设云计算实验室并配套完善的实训平台&#xff0c;对于提升学生的专业技能、增强就业竞争力具有重要意义。本文旨在提出2024年技校云计算实验室建设及云计…

列表内容过多卡顿?有索引栏如何实现滚动加载?

&#x1f453;写在前面 很多小伙伴可能在开发业务中会遇到这种问题&#xff0c;数据列表过多&#xff0c;造成dom一次性渲染卡顿&#xff0c;本文主要介绍滚动加载&#xff0c;实现在有索引栏的列表中使用滚动加载的方法。 本文技术栈使用的是vue2vant2&#xff0c;其他框架组…

letcode - string

翻转字符串 344. 反转字符串 - 力扣&#xff08;LeetCode&#xff09;https://leetcode.cn/problems/reverse-string/ class Solution { public:void reverseString(vector<char>& s) {reverse(s.begin(),s.end());//直接上逆置接口} }; 函数签名: void reverseStr…

CVPR 2024 录用数据出炉!这些方向是大趋势!

一年一度的计算机视觉和模式识别会议&#xff08;CVPR&#xff09;一直是 CV 界前沿研究的灯塔。 CVPR 2024 录用结果显示&#xff0c;今年共有 2719 篇论文被接收&#xff0c;录用率 23.6%。 那么大模型时代&#xff0c;今年的研究主题有哪些变化&#xff1f; 最近&#xf…

【Python】 ValueError: too many values to unpack 解决方案

【Python】 ValueError: too many values to unpack 解决方案 在Python编程中&#xff0c;ValueError: too many values to unpack是一个常见的错误&#xff0c;通常出现在使用解包操作时。本文将深入探讨这个错误的原因、解决思路、解决方法&#xff0c;并通过具体案例帮助大…

【Python学习手册(第四版)】学习笔记09.3-Python对象类型-分类、引用VS拷贝VS深拷贝、比较、相等、真假值等详解

个人总结难免疏漏&#xff0c;请多包涵。更多内容请查看原文。本文以及学习笔记系列仅用于个人学习、研究交流。 这部分稍杂&#xff0c;视需要选择目录读取。 主要讲的是对之前的所有对象类型作复习&#xff0c;以通俗易懂、由浅入深的方式进行介绍&#xff0c;所有对象类型…

『康之泉活水馆』手游:打造夏日梦幻水世界

设计背景 夏日的热浪与城市的喧嚣困扰着忙碌奔波的人群&#xff0c;康之泉活水馆&#xff0c;作为多功能的室内水上乐园&#xff0c;以其独特的魅力&#xff0c;成为夏日避暑的理想之地&#xff0c;让身心得以彻底放松。 设计理念 优联前端以康之泉品牌IP形象“康康”为灵感&a…

[GYCTF2020]FlaskApp (pin码,jinja2绕过注入)

题目就是flask 下面是判断模版注入的方法 a{*comment*}b和{{7*7}}base64编码后解码都报错no&#xff0c;无法判断模版引擎 直接用下jinja2的试一试&#xff0c;把编码后的密文拿去解码&#xff0c;payload&#xff1a; {{"".__class__mro(2)__subclasses__()}} 报…

英文文献翻译方法哪个好?高效率的翻译方法分享

三伏天的酷热也抵挡不住学术人探索知识的脚步&#xff0c;阅读和翻译英文文献几乎已经成为了许多研究者和学者的日常。然而在面对浩如烟海的英文资料时&#xff0c;如何高效准确地进行翻译&#xff0c;成为了亟待解决的问题。 今天我便挖掘到了5款实用的英文文献翻译工具&…

4.1.1、操作系统的概述

操作系统的作用:通过资源管理提高计算机系统的效率;改善人机界面向用户提供友好的工作环境。 操作系统的特征:并发性、共享性、虚拟性、不确定性。 操作系统的功能:进程管理、存储管理、文件管理、设备管理、作业管理。 操作系统的分类:批处理操作系统、分时操作系统(轮流使…

美股:苹果选择谷歌芯片支持人工智能技术

最近的研究报告显示&#xff0c;苹果公司在其新一代人工智能工具和功能套件中选择依赖谷歌设计的芯片&#xff0c;而非市场领导者 Nvidia。这一决定引发了业界的关注&#xff0c;尤其是考虑到Nvidia在人工智能处理器市场的主导地位。 谷歌云的TPU在苹果的AI基础设施中发挥关键作…

计算机再过几年会没落?

大部分人卷的计算机&#xff1a;Java web 实际上的计算机&#xff1a;web&#xff0c;图形学&#xff0c;Linux系统开发&#xff0c;一系列嵌入式开发&#xff0c;数据库&#xff0c;高性能服务器&#xff0c;中间件开发&#xff0c;三维建模&#xff0c;网络安全&#xff0c;…

vue2 封装弹框组件

安装 element-ui npm install element-ui --save ---force main.js 导入 import Vue from vue; import ElementUI from element-ui; import element-ui/lib/theme-chalk/index.css; import App from ./App.vue; Vue.use(ElementUI); new Vue({ el: #app, render: h > h(Ap…

Minio、MySQL、Redis、Milvus 安装

CPU&#xff1a;2核↑&#xff0c;内存&#xff1a;4GB↑ 开发工具&#xff1a;eclipse-jee、MySQL Workbench、MobaXterm、Redis Insight... 操作系统&#xff1a;CentOS Stream 9&#xff08;生产环境&#xff09;、Windos 11 Ubuntu 22.04.3&#xff08;开发环境&#xf…

使用 Kibana 和 Vega 构建高级可视化

作者&#xff1a;来自 Carly Richmond 为了解释在 Kibana 中构建 Vega 可视化的基础知识&#xff0c;我将使用此 GitHub 存储库中的 2 个示例。具体来说&#xff0c;我将介绍&#xff1a; 使用 Elasticsearch 聚合进行数据采购轴和标记事件和信号&#xff08;例如工具提示和更…

工具使用备忘录

npm npm是node包管理工具。yarn是npm的替代品&#xff0c;看起来使用更加广泛。cnpm是中国镜像。 cnpm安装时&#xff0c;曾经出现过错误。不进行安全验证后运行成功。 目前在WSL上可以全局使用cnpm 当时解决的方案是将报错信息copy下来&#xff0c;直接看通义千问的结果。 …

时间序列中多维度、多变量、多元、多尺度

目录 多尺度 多维度 多变量 多元 区别 举例&#xff1a; 多尺度 多尺度时间序列分析是指在不同的时间尺度上对数据进行分析。例如&#xff0c;某些现象可能在短期内表现出一种模式&#xff0c;而在长期内表现出另一种模式。多尺度分析可以帮助我们捕捉这些不同时间尺度上…

北斗RTK高精度定位系统介绍

北斗RTK高精度定位系统是一种高精度、高可靠、高效率的定位系统。它采用北斗卫星导航系统&#xff0c;结合实时动态差分RTK技术&#xff0c;能够实现亚米级的定位准确度&#xff0c;适用于石油化工、工厂、工地、园区、环卫等领域。 北斗RTK的核心技术是RTK技术&#xff0c;即实…