文章目录
- Linux 内核 vs Windows 内核
- 内核
- Linux 的设计
- MultiTask
- SMP
- ELF
- Monolithic Kernel
- **Windows 设计**
- 内存管理
- 虚拟内存
- 内存分段
- 内存分页
- 多级页表
- TLB
- 段页式内存管理
- Linux 内存布局
- 内存分配的过程是怎样的?
- 哪些内存可以被回收?
- 回收内存带来的性能影响
- 调整文件页和匿名页的回收倾向
- 尽早触发 kswapd 内核线程异步回收内存
- NUMA 架构下的内存回收策略
- 如何保护一个进程不被 OOM 杀掉呢?
- 操作系统虚拟内存大小
- 32 位系统的场景
- 64 位系统的场景
- Swap 机制的作用
- Linux 和 MySQL 的缓存
- Linux 操作系统的缓存
- MySQL 的缓存
- 传统 LRU 是如何管理内存数据的?
- 预读失效,怎么办?
- 什么是预读机制?
- 预读失效会带来什么问题?
- 如何避免预读失效造成的影响?
- 缓存污染,怎么办?
- 什么是缓存污染?
- 缓存污染会带来什么问题?
- 怎么避免缓存污染造成的影响?
- 进程管理
- 进程
- 进程的状态
- 进程的控制结构
- 进程的上下文切换
- 线程
- 线程和进程的区别是什么?
- 线程的上下文切换
- 线程的实现
- 内核线程实现
- 用户线程实现
- 混合实现
- Java线程实现
- 进程通信
- 多线程冲突
- 互斥的概念
- 同步的概念
- 互斥与同步的实现和使用
- 信号量
- 生产者-消费者问题
- 哲学家就餐问题
- 读者-写者问题
- 死锁的概念
- 互斥条件
- 持有并等待条件
- 不可剥夺条件
- 环路等待条件
- 避免死锁问题的发生
- 一个进程最多可以创建多少个线程?
- 线程崩溃,进程一定会崩溃吗
- 进程是如何崩溃的-信号机制简介
- 为什么线程崩溃不会导致 JVM 进程崩溃
- openJDK 源码解析
Linux 内核 vs Windows 内核
内核
什么是内核呢?
计算机是由各种外部硬件设备组成的,比如内存、cpu、硬盘等,如果每个应用都要和这些硬件设备对接通信协议,那这样太累了,所以这个中间人就由内核来负责,让内核作为应用连接硬件设备的桥梁,应用程序只需关心与内核交互,不用关心硬件的细节。
内核有哪些能力呢?
现代操作系统,内核一般会提供 4 个基本能力:
- 管理进程、线程,决定哪个进程、线程使用 CPU,也就是进程调度的能力;
- 管理内存,决定内存的分配和回收,也就是内存管理的能力;
- 管理硬件设备,为进程与硬件设备之间提供通信能力,也就是硬件通信能力;
- 提供系统调用,如果应用程序要运行更高权限运行的服务,那么就需要有系统调用,它是用户程序与操作系统之间的接口。
内核是怎么工作的?
内核具有很高的权限,可以控制 cpu、内存、硬盘等硬件,而应用程序具有的权限很小,因此大多数操作系统,把内存分成了两个区域:
- 内核空间,这个内存空间只有内核程序可以访问;
- 用户空间,这个内存空间专门给应用程序使用;
用户空间的代码只能访问一个局部的内存空间,而内核空间的代码可以访问所有内存空间。因此,当程序使用用户空间时,我们常说该程序在用户态执行,而当程序使内核空间时,程序则在内核态执行。
应用程序如果需要进入内核空间,就需要通过系统调用,下面来看看系统调用的过程:
**内核程序执行在内核态,用户程序执行在用户态。当应用程序使用系统调用时,会产生一个中断。**发生中断后, CPU 会中断当前在执行的用户程序,转而跳转到中断处理程序,也就是开始执行内核程序。内核处理完后,主动触发中断,把 CPU 执行权限交回给用户程序,回到用户态继续工作。
Linux 的设计
Linux 内核设计的理念主要有这几个点:
- MultiTask,多任务
- SMP,对称多处理
- ELF,可执行文件链接格式
- Monolithic Kernel,宏内核
MultiTask
MultiTask 的意思是多任务,代表着 Linux 是一个多任务的操作系统。
多任务意味着可以有多个任务同时执行,这里的「同时」可以是并发或并行:
- 对于单核 CPU 时,可以让每个任务执行一小段时间,时间到就切换另外一个任务,从宏观角度看,一段时间内执行了多个任务,这被称为并发。
- 对于多核 CPU 时,多个任务可以同时被不同核心的 CPU 同时执行,这被称为并行。
SMP
SMP 的意思是对称多处理,代表着每个 CPU 的地位是相等的,对资源的使用权限也是相同的,多个 CPU 共享同一个内存,每个 CPU 都可以访问完整的内存和硬件资源。
这个特点决定了 Linux 操作系统不会有某个 CPU 单独服务应用程序或内核程序,而是每个程序都可以被分配到任意一个 CPU 上被执行。
ELF
ELF 的意思是可执行文件链接格式,它是 Linux 操作系统中可执行文件的存储格式,你可以从下图看到它的结构:
ELF 把文件分成了一个个分段,每一个段都有自己的作用
另外,ELF 文件有两种索引,Program header table 中记录了「运行时」所需的段,而 Section header table 记录了二进制文件中各个「段的首地址」。
那 ELF 文件怎么生成的呢?
我们编写的代码,首先通过「编译器」编译成汇编代码,接着通过「汇编器」变成目标代码,也就是目标文件,最后通过「链接器」把多个目标文件以及调用的各种函数库链接起来,形成一个可执行文件,也就是 ELF 文件。
那 ELF 文件是怎么被执行的呢?
执行 ELF 文件的时候,会通过「装载器」把 ELF 文件装载到内存里,CPU 读取内存中的指令和数据,于是程序就被执行起来了。
Monolithic Kernel
Monolithic Kernel 的意思是宏内核,Linux 内核架构就是宏内核,意味着 Linux 的内核是一个完整的可执行程序,且拥有最高的权限。
宏内核的特征是系统内核的所有模块,比如进程调度、内存管理、文件系统、设备驱动等,都运行在内核态。
不过,Linux 也实现了动态加载内核模块的功能,例如大部分设备驱动是以可加载模块的形式存在的,与内核其他模块解藕,让驱动开发和驱动加载更为方便、灵活。
与宏内核相反的是微内核,微内核架构的内核只保留最基本的能力,比如进程调度、虚拟机内存、中断等,**把一些应用放到了用户空间,比如驱动程序、文件系统等。**这样服务与服务之间是隔离的,单个服务出现故障或者完全攻击,也不会导致整个操作系统挂掉,提高了操作系统的稳定性和可靠性。
微内核内核功能少,可移植性高,相比宏内核有一点不好的地方在于,**由于驱动程序不在内核中,而且驱动程序一般会频繁调用底层能力的,于是驱动和硬件设备交互就需要频繁切换到内核态,这样会带来性能损耗。**华为的鸿蒙操作系统的内核架构就是微内核。
还有一种内核叫混合类型内核,它的架构有点像微内核,内核里面会有一个最小版本的内核,然后其他模块会在这个基础上搭建,然后实现的时候会跟宏内核类似,也就是把整个内核做成一个完整的程序,大部分服务都在内核中,这就像是宏内核的方式包裹着一个微内核。
Windows 设计
Windows 和 Linux 一样,同样支持 MultiTask 和 SMP,但不同的是,Window 的内核设计是混合型内核,在上图你可以看到内核中有一个 MicroKernel 模块,这个就是最小版本的内核,而整个内核实现是一个完整的程序,含有非常多模块。
Windows 的可执行文件的格式与 Linux 也不同,所以这两个系统的可执行文件是不可以在对方上运行的。
Windows 的可执行文件格式叫 PE,称为可移植执行文件,扩展名通常是.exe、.dll、.sys等。
PE 的结构你可以从下图中看到,它与 ELF 结构有一点相似。
- 宏内核,包含多个模块,整个内核像一个完整的程序;
- 微内核,有一个最小版本的内核,一些模块和服务则由用户态管理;
- 混合内核,是宏内核和微内核的结合体,内核中抽象出了微内核的概念,也就是内核中会有一个小型的内核,其他模块就在这个基础上搭建,整个内核是个完整的程序;
内存管理
虚拟内存
操作系统会提供一种机制,将不同进程的虚拟地址和不同内存的物理地址映射起来。
如果程序要访问虚拟地址的时候,由操作系统转换成不同的物理地址,这样不同的进程运行的时候,写入的是不同的物理地址,这样就不会冲突了。
于是,这里就引出了两种地址的概念:
- 我们程序所使用的内存地址叫做虚拟内存地址(Virtual Memory Address)
- 实际存在硬件里面的空间地址叫物理内存地址(Physical Memory Address)。
操作系统引入了虚拟内存,进程持有的虚拟地址会通过 CPU 芯片中的内存管理单元(MMU)的映射关系,来转换变成物理地址,然后再通过物理地址访问内存,如下图所示:
:::info
操作系统是如何管理虚拟地址与物理地址之间的关系?
:::
主要有两种方式,分别是内存分段和内存分页,分段是比较早提出的,我们先来看看内存分段。
内存分段
程序是由若干个逻辑分段组成的,如可由代码分段、数据分段、栈段、堆段组成。不同的段是有不同的属性的,所以就用分段(Segmentation)的形式把这些段分离出来。
- 分段机制下,虚拟地址和物理地址是如何映射的?
分段机制下的虚拟地址由两部分组成,段选择因子和段内偏移量。
段选择因子和段内偏移量:
- 段选择因子就保存在段寄存器里面。段选择因子里面最重要的是段号,用作段表的索引。段表里面保存的是这个段的基地址、段的界限和特权等级等。
- 虚拟地址中的段内偏移量应该位于 0 和段界限之间,如果段内偏移量是合法的,就将段基地址加上段内偏移量得到物理内存地址。
在上面,知道了虚拟地址是通过段表与物理地址进行映射的,分段机制会把程序的虚拟地址分成 4 个段,每个段在段表中有一个项,在这一项找到段的基地址,再加上偏移量,于是就能找到物理内存中的地址。
分段的办法很好,解决了程序本身不需要关心具体的物理内存地址的问题,但它也有一些不足之处:
- 第一个就是内存碎片的问题。
- 第二个就是内存交换的效率低的问题。
接下来,说说为什么会有这两个问题。
解决「外部内存碎片」的问题就是内存交换。
可以把音乐程序占用的那 256MB 内存写到硬盘上,然后再从硬盘上读回来到内存里。不过再读回的时候,我们不能装载回原来的位置,而是紧紧跟着那已经被占用了的 512MB 内存后面。这样就能空缺出连续的 256MB 空间,于是新的 200MB 程序就可以装载进来。
但是硬盘访问速度很慢。
为了解决内存分段的「外部内存碎片和内存交换效率低」的问题,就出现了内存分页。
内存分页
要解决这些问题,那么就要想出能少出现一些内存碎片的办法。另外,当需要进行内存交换的时候,让需要交换写入或者从磁盘装载的数据更少一点,这样就可以解决问题了。这个办法,也就是内存分页(Paging)。
分页是把整个虚拟和物理内存空间切成一段段固定尺寸的大小。这样一个连续并且尺寸固定的内存空间,我们叫页(Page)。在 Linux 下,每一页的大小为 4KB。
虚拟地址与物理地址之间通过页表来映射,如下图:
页表是存储在内存里的,内存管理单元 (MMU)就做将虚拟内存地址转换成物理地址的工作。
而当进程访问的虚拟地址在页表中查不到时,系统会产生一个缺页异常,进入系统内核空间分配物理内存、更新进程页表,最后再返回用户空间,恢复进程的运行。
:::info
分页是怎么解决分段的「外部内存碎片和内存交换效率低」的问题?
:::
内存分页由于内存空间都是预先划分好的,也就不会像内存分段一样,在段与段之间会产生间隙非常小的内存,这正是分段会产生外部内存碎片的原因。而采用了分页,页与页之间是紧密排列的,所以不会有外部碎片。
但是,因为内存分页机制分配内存的最小单位是一页,即使程序不足一页大小,我们最少只能分配一个页,所以页内会出现内存浪费,所以针对内存分页机制会有内部内存碎片的现象。
如果内存空间不够,操作系统会把其他正在运行的进程中的「最近没被使用」的内存页面给释放掉,也就是暂时写在硬盘上,称为换出(Swap Out)。一旦需要的时候,再加载进来,称为换入(Swap In)。所以,一次性写入磁盘的也只有少数的一个页或者几个页,不会花太多时间,内存交换的效率就相对比较高。
在分页机制下,虚拟地址分为两部分,页号和页内偏移。页号作为页表的索引,页表包含物理页每页所在物理内存的基地址,这个基地址与页内偏移的组合就形成了物理内存地址,见下图。
在 32 位的环境下,虚拟地址空间共有 4GB,假设一个页的大小是 4KB(2^12),那么就需要大约 100 万 (2^20) 个页,每个「页表项」需要 4 个字节大小来存储,那么整个 4GB 空间的映射就需要有 4MB 的内存来存储页表。
这 4MB 大小的页表,看起来也不是很大。但是要知道每个进程都是有自己的虚拟地址空间的,也就说都有自己的页表。
那么,100 个进程的话,就需要 400MB 的内存来存储页表,这是非常大的内存了,更别说 64 位的环境了。
多级页表
我们把这个 100 多万个「页表项」的单级页表再分页,将页表(一级页表)分为 1024 个页表(二级页表),每个表(二级页表)中包含 1024 个「页表项」,形成二级分页。如下图所示:
:::info
你可能会问,分了二级表,映射 4GB 地址空间就需要 4KB(一级页表)+ 4MB(二级页表)的内存,这样占用空间不是更大了吗?
:::
当然如果 4GB 的虚拟地址全部都映射到了物理内存上的话,二级分页占用空间确实是更大了,但是,我们往往不会为一个进程分配那么多内存。
其实我们应该换个角度来看问题,还记得计算机组成原理里面无处不在的局部性原理么?
每个进程都有 4GB 的虚拟地址空间,而显然对于大多数程序来说,其使用到的空间远未达到 4GB,因为会存在部分对应的页表项都是空的,根本没有分配,对于已分配的页表项,如果存在最近一定时间未访问的页表,在物理内存紧张的情况下,操作系统会将页面换出到硬盘,也就是说不会占用物理内存。
如果使用了二级分页,一级页表就可以覆盖整个 4GB 虚拟地址空间,但如果某个一级页表的页表项没有被用到,也就不需要创建这个页表项对应的二级页表了,即可以在需要时才创建二级页表。做个简单的计算,假设只有 20% 的一级页表项被用到了,那么页表占用的内存空间就只有 4KB(一级页表) + 20% * 4MB(二级页表)= 0.804MB,这对比单级页表的 4MB 是不是一个巨大的节约?
:::info
那么为什么不分级的页表就做不到这样节约内存呢?
:::
我们从页表的性质来看,保存在内存中的页表承担的职责是将虚拟地址翻译成物理地址。假如虚拟地址在页表中找不到对应的页表项,计算机系统就不能工作了。所以页表一定要覆盖全部虚拟地址空间,不分级的页表就需要有 100 多万个页表项来映射,而二级分页则只需要 1024 个页表项(此时一级页表覆盖到了全部虚拟地址空间,二级页表在需要时创建)。
我们把二级分页再推广到多级页表,就会发现页表占用的内存空间更少了,这一切都要归功于对局部性原理的充分应用。
对于 64 位的系统,两级分页肯定不够了,就变成了四级目录,分别是:
- 全局页目录项 PGD(Page Global Directory);
- 上层页目录项 PUD(Page Upper Directory);
- 中间页目录项 PMD(Page Middle Directory);
- 页表项 PTE(Page Table Entry);
TLB
程序是有局部性的,即在一段时间内,整个程序的执行仅限于程序中的某一部分。相应地,执行所访问的存储空间也局限于某个内存区域。
我们就可以利用这一特性,把最常访问的几个页表项存储到访问速度更快的硬件,于是计算机科学家们,就在 CPU 芯片中,加入了一个专门存放程序最常访问的页表项的 Cache,这个 Cache 就是 TLB(Translation Lookaside Buffer) ,通常称为页表缓存、转址旁路缓存、快表等。
段页式内存管理
内存分段和内存分页并不是对立的,它们是可以组合起来在同一个系统中使用的,那么组合起来后,通常称为段页式内存管理。
段页式内存管理实现的方式:
- 先将程序划分为多个有逻辑意义的段,也就是前面提到的分段机制;
- 接着再把每个段划分为多个页,也就是对分段划分出来的连续空间,再划分固定大小的页;
这样,地址结构就由段号、段内页号和页内位移三部分组成。
用于段页式地址变换的数据结构是每一个程序一张段表,每个段又建立一张页表,段表中的地址是页表的起始地址,而页表中的地址则为某页的物理页号,如图所示:
Linux 内存布局
Linux 系统主要采用了分页管理,但是由于 Intel 处理器的发展史,Linux 系统无法避免分段管理。于是 Linux 就把所有段的基地址设为 0,也就意味着所有程序的地址空间都是线性地址空间(虚拟地址),相当于屏蔽了 CPU 逻辑地址的概念,所以段只被用于访问控制和内存保护。
内存分配的过程是怎样的?
应用程序通过 malloc 函数申请内存的时候,实际上申请的是虚拟内存,此时并不会分配物理内存。
当应用程序读写了这块虚拟内存,CPU 就会去访问这个虚拟内存, 这时会发现这个虚拟内存没有映射到物理内存, CPU 就会产生缺页中断,进程会从用户态切换到内核态,并将缺页中断交给内核的 Page Fault Handler (缺页中断函数)处理。
缺页中断处理函数会看是否有空闲的物理内存,如果有,就直接分配物理内存,并建立虚拟内存与物理内存之间的映射关系。
如果没有空闲的物理内存,那么内核就会开始进行回收内存的工作,回收的方式主要是两种:直接内存回收和后台内存回收。
- 后台内存回收(kswapd):在物理内存紧张的时候,会唤醒 kswapd 内核线程来回收内存,这个回收内存的过程异步的,不会阻塞进程的执行。
- 直接内存回收(direct reclaim):如果后台异步回收跟不上进程内存申请的速度,就会开始直接回收,这个回收内存的过程是同步的,会阻塞进程的执行。
如果直接内存回收后,空闲的物理内存仍然无法满足此次物理内存的申请,那么内核就会放最后的大招了 ——触发 OOM (Out of Memory)机制。
OOM Killer 机制会根据算法选择一个占用物理内存较高的进程,然后将其杀死,以便释放内存资源,如果物理内存依然不足,OOM Killer 会继续杀死占用物理内存较高的进程,直到释放足够的内存位置。
哪些内存可以被回收?
系统内存紧张的时候,就会进行回收内存的工作,那具体哪些内存是可以被回收的呢?
主要有两类内存可以被回收,而且它们的回收方式也不同。
- 文件页(File-backed Page):**内核缓存的磁盘数据(Buffer)和内核缓存的文件数据(Cache)**都叫作文件页。大部分文件页,都可以直接释放内存,以后有需要时,再从磁盘重新读取就可以了。而那些被应用程序修改过,并且暂时还没写入磁盘的数据(也就是脏页),就得先写入磁盘,然后才能进行内存释放。所以,回收干净页的方式是直接释放内存,回收脏页的方式是先写回磁盘后再释放内存。
- 匿名页(Anonymous Page):这部分内存没有实际载体,不像文件缓存有硬盘文件这样一个载体,比如堆、栈数据等。这部分内存很可能还要再次被访问,所以不能直接释放内存,它们回收的方式是通过 Linux 的 Swap 机制,Swap 会把不常访问的内存先写到磁盘中,然后释放这些内存,给其他更需要的进程使用。再次访问这些内存时,重新从磁盘读入内存就可以了。
文件页和匿名页的回收都是基于 LRU 算法,也就是优先回收不常访问的内存。LRU 回收算法,实际上维护着 active 和 inactive 两个双向链表,其中:
active_list
活跃内存页链表,这里存放的是最近被访问过(活跃)的内存页;inactive_list
不活跃内存页链表,这里存放的是很少被访问(非活跃)的内存页;
越接近链表尾部,就表示内存页越不常访问。这样,在回收内存时,系统就可以根据活跃程度,优先回收不活跃的内存。
回收内存带来的性能影响
回收内存的操作基本都会发生磁盘 I/O 的,如果回收内存的操作很频繁,意味着磁盘 I/O 次数会很多,这个过程势必会影响系统的性能,整个系统给人的感觉就是很卡。
下面针对回收内存导致的性能影响,说说常见的解决方式。
调整文件页和匿名页的回收倾向
从文件页和匿名页的回收操作来看,文件页的回收操作对系统的影响相比匿名页的回收操作会少一点,因为文件页对于干净页回收是不会发生磁盘 I/O 的,而匿名页的 Swap 换入换出这两个操作都会发生磁盘 I/O。
尽早触发 kswapd 内核线程异步回收内存
如果系统时不时发生抖动,并且在抖动的时间段里如果通过 sar -B 观察到 pgscand 数值很大,那大概率是因为「直接内存回收」导致的。
针对这个问题,解决的办法就是,可以通过尽早的触发「后台内存回收」来避免应用程序进行直接内存回收。
:::info
什么条件下才能触发 kswapd 内核线程回收内存呢?
:::
内核定义了三个内存阈值(watermark,也称为水位),用来衡量当前剩余内存(pages_free)是否充裕或者紧张,分别是:
- 页最小阈值(pages_min);
- 页低阈值(pages_low);
- 页高阈值(pages_high);
这三个内存阈值会划分为四种内存使用情况,如下图:
pages_min = min_free_kbytes
pages_low = pages_min*5/4
pages_high = pages_min*3/2
增大了 min_free_kbytes
配置后,这会使得系统预留过多的空闲内存,从而在一定程度上降低了应用程序可使用的内存量,这在一定程度上浪费了内存。极端情况下设置 min_free_kbytes
接近实际物理内存大小时,留给应用程序的内存就会太少而可能会频繁地导致 OOM 的发生。
所以在调整 min_free_kbytes
之前,需要先思考一下,应用程序更加关注什么,如果关注延迟那就适当地增大 min_free_kbytes,如果关注内存的使用量那就适当地调小 min_free_kbytes
。
NUMA 架构下的内存回收策略
说 NUMA 架构前,先给大家说说 SMP 架构,这两个架构都是针对 CPU 的。
SMP 指的是一种多个 CPU 处理器共享资源的电脑硬件架构,也就是说每个 CPU 地位平等,它们共享相同的物理资源,包括总线、内存、IO、操作系统等。每个 CPU 访问内存所用时间都是相同的,因此,这种系统也被称为一致存储访问结构(UMA,Uniform Memory Access)。
随着 CPU 处理器核数的增多,多个 CPU 都通过一个总线访问内存,这样总线的带宽压力会越来越大,同时每个 CPU 可用带宽会减少,这也就是 SMP 架构的问题。
为了解决 SMP 架构的问题,就研制出了 NUMA 结构,即非一致存储访问结构(Non-uniform memory access,NUMA)。
NUMA 架构将每个 CPU 进行了分组,每一组 CPU 用 Node 来表示,一个 Node 可能包含多个 CPU 。
每个 Node 有自己独立的资源,包括内存、IO 等,每个 Node 之间可以通过互联模块总线(QPI)进行通信,所以,也就意味着每个 Node 上的 CPU 都可以访问到整个系统中的所有内存。但是,访问远端 Node 的内存比访问本地内存要耗时很多。
:::info
NUMA 架构跟回收内存有什么关系?
:::
在 NUMA 架构下,当某个 Node 内存不足时,系统可以从其他 Node 寻找空闲内存,也可以从本地内存中回收内存。
具体选哪种模式,可以通过/proc/sys/vm/zone_reclaim_mode
来控制。它支持以下几个选项:
- 0 (默认值):在回收本地内存之前,在其他 Node 寻找空闲内存;
- 1:只回收本地内存;
- 2:只回收本地内存,在本地回收内存时,可以将文件页中的脏页写回硬盘,以回收内存。
- 4:只回收本地内存,在本地回收内存时,可以用 swap 方式回收内存。
在使用 NUMA 架构的服务器,如果系统出现还有一半内存的时候,却发现系统频繁触发「直接内存回收」,导致了影响了系统性能,那么大概率是因为 zone_reclaim_mode
没有设置为 0 ,导致当本地内存不足的时候,只选择回收本地内存的方式,而不去使用其他 Node 的空闲内存。
虽然说访问远端 Node 的内存比访问本地内存要耗时很多,但是相比内存回收的危害而言,访问远端 Node 的内存带来的性能影响还是比较小的。因此,zone_reclaim_mode
一般建议设置为 0。
如何保护一个进程不被 OOM 杀掉呢?
在系统空闲内存不足的情况,进程申请了一个很大的内存,如果直接内存回收都无法回收出足够大的空闲内存,那么就会触发 OOM 机制,内核就会根据算法选择一个进程杀掉。
Linux 到底是根据什么标准来选择被杀的进程呢?
用「系统总的可用页面数」乘以 「OOM 校准值 **oom_score_adj**
」再除以 1000,最后再加上进程已经使用的物理页面数,计算出来的值越大,那么这个进程被 OOM Kill 的几率也就越大。
每个进程的 oom_score_adj
默认值都为 0,所以最**终得分跟进程自身消耗的内存有关,消耗的内存越大越容易被杀掉。**我们可以通过调整 oom_score_adj
的数值,来改成进程的得分结果:
- 如果你不想某个进程被首先杀掉,那你可以调整该进程的
oom_score_adj
,从而改变这个进程的得分结果,降低该进程被 OOM 杀死的概率。 - 如果你想某个进程无论如何都不能被杀掉,那你可以将
oom_score_adj
配置为 -1000。
我们最好将一些很重要的系统服务的 oom_score_adj
配置为 -1000,比如 sshd
,因为这些系统服务一旦被杀掉,我们就很难再登陆进系统了。
但是,不建议将我们自己的业务程序的 oom_score_adj
设置为 -1000,因为业务程序一旦发生了内存泄漏,而它又不能被杀掉,这就会导致随着它的内存开销变大,OOM killer 不停地被唤醒,从而把其他进程一个个给杀掉。
操作系统虚拟内存大小
应用程序通过 malloc 函数申请内存的时候,实际上申请的是虚拟内存,此时并不会分配物理内存。
当应用程序读写了这块虚拟内存,CPU 就会去访问这个虚拟内存, 这时会发现这个虚拟内存没有映射到物理内存, CPU 就会产生缺页中断,进程会从用户态切换到内核态,并将缺页中断交给内核的缺页中断函数处理。缺页中断处理函数会看是否有空闲的物理内存:
- 如果有,就直接分配物理内存,并建立虚拟内存与物理内存之间的映射关系。
- 如果没有空闲的物理内存,那么内核就会开始进行回收内存的工作,如果回收内存工作结束后,空闲的物理内存仍然无法满足此次物理内存的申请,那么内核就会放最后的大招了触发 OOM (Out of Memory)机制。
32 位操作系统和 64 位操作系统的虚拟地址空间大小是不同的,在 Linux 操作系统中,虚拟地址空间的内部又被分为内核空间和用户空间两部分。
32 位系统的场景
:::info
在 32 位操作系统、4GB 物理内存的机器上,申请 8GB 内存,会怎么样?
:::
因为 32 位操作系统,进程最多只能申请 3 GB 大小的虚拟内存空间,所以进程申请 8GB 内存的话,在申请虚拟内存阶段就会失败(我手上没有 32 位操作系统测试,我估计失败的错误是 cannot allocate memory,也就是无法申请内存失败)。
64 位系统的场景
:::info
在 64 位操作系统、4GB 物理内存的机器上,申请 8G 内存,会怎么样?
:::
64 位操作系统,进程可以使用 128 TB 大小的虚拟内存空间,所以进程申请 8GB 内存是没问题的,因为进程申请内存是申请虚拟内存,只要不读写这个虚拟内存,操作系统就不会分配物理内存。
:::info
之前有读者跟我反馈,说他自己也做了这个实验,然后发现 64 位操作系统,在申请 4GB 虚拟内存的时候失败了,这是为什么呢?
:::
我当时帮他排查了下,发现跟 Linux 中的 overcommit_memory
参数有关,可以使用 cat /proc/sys/vm/overcommit_memory 来查看这个参数,这个参数接受三个值:
- 如果值为 0(默认值),代表:Heuristic overcommit handling,它允许overcommit,但过于明目张胆的overcommit会被拒绝,比如malloc一次性申请的内存大小就超过了系统总内存。Heuristic的意思是“试探式的”,内核利用某种算法猜测你的内存申请是否合理,大概可以理解为单次申请不能超过free memory + free swap + pagecache的大小 + SLAB中可回收的部分 ,超过了就会拒绝overcommit。
- 如果值为 1,代表:Always overcommit. 允许overcommit,对内存申请来者不拒。
- 如果值为 2,代表:Don’t overcommit. 禁止overcommit。
当时那位读者的 overcommit_memory
参数是默认值 0 ,所以申请失败的原因可能是内核认为我们申请的内存太大了,它认为不合理,所以 malloc()
返回了 Cannot allocate memory 错误,这里申请 4GB 虚拟内存失败的同学可以将这个 overcommit_memory
设置为1,就可以 overcommit 了。
:::info
那么将这个 overcommit_memory
设置为 1 之后,64 位的主机就可以申请接近 128T 虚拟内存了吗?
:::
不一定,还得看你服务器的物理内存大小。
读者的服务器物理内存是 2 GB,实验后发现,进程还没有申请到 128T 虚拟内存的时候就被杀死了。
注意,这次是 killed,而不是 Cannot Allocate Memory,说明并不是内存申请有问题,而是触发 OOM 了。
但是为什么会触发 OOM 呢?
那得看你的主机的「物理内存」够不够大了,即使 malloc 申请的是虚拟内存,只要不去访问就不会映射到物理内存,但是申请虚拟内存的过程中,还是使用到了物理内存(比如内核保存虚拟内存的数据结构,也是占用物理内存的),如果你的主机是只有 2GB 的物理内存的话,大概率会触发 OOM。
:::info
那么 2GB 的物理内存的 64 位操作系统,就不能申请128T的虚拟内存了吗?
:::
其实可以,上面的情况是还没开启 swap 的情况。
Swap 机制的作用
当系统的物理内存不够用的时候,就需要将物理内存中的一部分空间释放出来,以供当前运行的程序使用。那些被释放的空间可能来自一些很长时间没有什么操作的程序,这些被释放的空间会被临时保存到磁盘,等到那些程序要运行时,再从磁盘中恢复保存的数据到内存中。
另外,当内存使用存在压力的时候,会开始触发内存回收行为,会把这些不常访问的内存先写到磁盘中,然后释放这些内存,给其他更需要的进程使用。再次访问这些内存时,重新从磁盘读入内存就可以了。
这种将内存数据换出磁盘,又从磁盘中恢复数据到内存的过程,就是 Swap 机制负责的。
Swap 就是把一块磁盘空间或者本地文件,当成内存来使用,它包含换出和换入两个过程:
- 换出(Swap Out) ,是把进程暂时不用的内存数据存储到磁盘中,并释放这些数据占用的内存;
- 换入(Swap In),是在进程再次访问这些内存的时候,把它们从磁盘读到内存中来;
Swap 换入换出的过程如下图:
使用 Swap 机制优点是,应用程序实际可以使用的内存空间将远远超过系统的物理内存。由于硬盘空间的价格远比内存要低,因此这种方式无疑是经济实惠的。当然,频繁地读写硬盘,会显著降低操作系统的运行速率,这也是 Swap 的弊端。
Linux 中的 Swap 机制会在内存不足和内存闲置的场景下触发:
- 内存不足:当系统需要的内存超过了可用的物理内存时,内核会将内存中不常使用的内存页交换到磁盘上为当前进程让出内存,保证正在执行的进程的可用性,这个内存回收的过程是强制的直接内存回收。直接内存回收是同步的过程,会阻塞当前申请内存的进程。
- 内存闲置:应用程序在启动阶段使用的大量内存在启动后往往都不会使用,通过后台运行的守护进程(
kSwapd
),我们可以将这部分只使用一次的内存交换到磁盘上为其他内存的申请预留空间。kSwapd
是Linux 负责页面置换的守护进程,它也是负责交换闲置内存的主要进程,它会在空闲内存低于一定水位时,回收内存页中的空闲内存保证系统中的其他进程可以尽快获得申请的内存。kSwapd
是后台进程,所以回收内存的过程是异步的,不会阻塞当前申请内存的进程。
Linux 和 MySQL 的缓存
Linux 操作系统的缓存
在应用程序读取文件的数据的时候,Linux 操作系统是会对读取的文件数据进行缓存的,会缓存在文件系统中的 Page Cache。
Page Cache 属于内存空间里的数据,由于内存访问比磁盘访问快很多,在下一次访问相同的数据就不需要通过磁盘 I/O 了,命中缓存就直接返回数据即可。
因此,Page Cache 起到了加速访问数据的作用。
MySQL 的缓存
MySQL 的数据是存储在磁盘里的,为了提升数据库的读写性能,Innodb 存储引擎设计了一个缓冲池(Buffer Pool),Buffer Pool 属于内存空间里的数据。
有了缓冲池后:
- 当读取数据时,如果数据存在于 Buffer Pool 中,客户端就会直接读取 Buffer Pool 中的数据,否则再去磁盘中读取。
- 当修改数据时,首先是修改 Buffer Pool 中数据所在的页,然后将其页设置为脏页,最后由后台线程将脏页写入到磁盘。
传统 LRU 是如何管理内存数据的?
传统的 LRU 算法的实现思路是这样的:
- 当访问的页在内存里,就直接把该页对应的 LRU 链表节点移动到链表的头部。
- 当访问的页不在内存里,除了要把该页放入到 LRU 链表的头部,还要淘汰 LRU 链表末尾的页。
比如下图,假设 LRU 链表长度为 5,LRU 链表从左到右有编号为 1,2,3,4,5 的页。
传统的 LRU 算法并没有被 Linux 和 MySQL 使用,因为传统的 LRU 算法无法避免下面这两个问题:
- 预读失效导致缓存命中率下降;
- 缓存污染导致缓存命中率下降;
预读失效,怎么办?
什么是预读机制?
Linux 操作系统为基于 Page Cache 的读缓存机制提供预读机制,一个例子是:
- 应用程序只想读取磁盘上文件 A 的 offset 为 0-3KB 范围内的数据,由于磁盘的基本读写单位为 block(4KB),于是操作系统至少会读 0-4KB 的内容,这恰好可以在一个 page 中装下。
- 但是操作系统出于空间局部性原理(靠近当前被访问数据的数据,在未来很大概率会被访问到),会选择将磁盘块 offset [4KB,8KB)、[8KB,12KB) 以及 [12KB,16KB) 都加载到内存,于是额外在内存中申请了 3 个 page;
下图代表了操作系统的预读机制:
上图中,应用程序利用 read 系统调动读取 4KB 数据,实际上内核使用预读机制(ReadaHead) 机制完成了 16KB 数据的读取,也就是通过一次磁盘顺序读将多个 Page 数据装入 Page Cache。
这样下次读取 4KB 数据后面的数据的时候,就不用从磁盘读取了,直接在 Page Cache 即可命中数据。因此,预读机制带来的好处就是减少了 磁盘 I/O 次数,提高系统磁盘 I/O 吞吐量。
MySQL Innodb 存储引擎的 Buffer Pool 也有类似的预读机制,MySQL 从磁盘加载页时,会提前把它相邻的页一并加载进来,目的是为了减少磁盘 IO。
预读失效会带来什么问题?
如果这些被提前加载进来的页,并没有被访问,相当于这个预读工作是白做了,这个就是预读失效。
如果使用传统的 LRU 算法,就会把「预读页」放到 LRU 链表头部,而当内存空间不够的时候,还需要把末尾的页淘汰掉。
如果这些「预读页」如果一直不会被访问到,就会出现一个很奇怪的问题,不会被访问的预读页却占用了 LRU 链表前排的位置,而末尾淘汰的页,可能是热点数据,这样就大大降低了缓存命中率 。
如何避免预读失效造成的影响?
我们不能因为害怕预读失效,而将预读机制去掉,大部分情况下,空间局部性原理还是成立的。
要避免预读失效带来影响,最好就是让预读页停留在内存里的时间要尽可能的短,让真正被访问的页才移动到 LRU 链表的头部,从而保证真正被读取的热数据留在内存里的时间尽可能长。
那到底怎么才能避免呢?
Linux 操作系统和 MySQL Innodb 通过改进传统 LRU 链表来避免预读失效带来的影响,具体的改进分别如下:
- Linux 操作系统实现两个了 LRU 链表:活跃 LRU 链表(active_list)和非活跃 LRU 链表(inactive_list)
- MySQL 的 Innodb 存储引擎是在一个 LRU 链表上划分来 2 个区域:young 区域 和 old 区域。
这两个改进方式,设计思想都是类似的,都是将数据分为了冷数据和热数据,然后分别进行 LRU 算法。不再像传统的 LRU 算法那样,所有数据都只用一个 LRU 算法管理。
接下来,具体聊聊 Linux 和 MySQL 是如何避免预读失效带来的影响?
:::info
Linux 是如何避免预读失效带来的影响?
:::
Linux 操作系统实现两个了 LRU 链表:活跃 LRU 链表(active_list)和非活跃 LRU 链表(inactive_list)。
- active list 活跃内存页链表,这里存放的是最近被访问过(活跃)的内存页;
- inactive list 不活跃内存页链表,这里存放的是很少被访问(非活跃)的内存页;
有了这两个 LRU 链表后,预读页就只需要加入到 inactive list 区域的头部,当页被真正访问的时候,才将页插入 active list 的头部。如果预读的页一直没有被访问,就会从 inactive list 移除,这样就不会影响 active list 中的热点数据。
接下来,给大家举个例子。
假设 active list 和 inactive list 的长度为 5,目前内存中已经有如下 10 个页:
现在有个编号为 20 的页被预读了,这个页只会被插入到 inactive list 的头部,而 inactive list 末尾的页(10号)会被淘汰掉。
即使编号为 20 的预读页一直不会被访问,它也没有占用到 active list 的位置,而且还会比 active list 中的页更早被淘汰出去。
如果 20 号页被预读后,立刻被访问了,那么就会将它插入到 active list 的头部, active list 末尾的页(5号),会被降级到 inactive list ,作为 inactive list 的头部,这个过程并不会有数据被淘汰。
:::info
MySQL 是如何避免预读失效带来的影响?
:::
MySQL 的 Innodb 存储引擎是在一个 LRU 链表上划分来 2 个区域,young 区域 和 old 区域。
young 区域在 LRU 链表的前半部分,old 区域则是在后半部分,这两个区域都有各自的头和尾节点,如下图:
young 区域与 old 区域在 LRU 链表中的占比关系并不是一比一的关系,而是 63:37(默认比例)的关系。
划分这两个区域后,预读的页就只需要加入到 old 区域的头部,当页被真正访问的时候,才将页插入 young 区域的头部。如果预读的页一直没有被访问,就会从 old 区域移除,这样就不会影响 young 区域中的热点数据。
接下来,给大家举个例子。
假设有一个长度为 10 的 LRU 链表,其中 young 区域占比 70 %,old 区域占比 30 %。
现在有个编号为 20 的页被预读了,这个页只会被插入到 old 区域头部,而 old 区域末尾的页(10号)会被淘汰掉。
如果 20 号页一直不会被访问,它也没有占用到 young 区域的位置,而且还会比 young 区域的数据更早被淘汰出去。
如果 20 号页被预读后,立刻被访问了,那么就会将它插入到 young 区域的头部,young 区域末尾的页(7号),会被挤到 old 区域,作为 old 区域的头部,这个过程并不会有页被淘汰。
缓存污染,怎么办?
什么是缓存污染?
虽然 Linux (实现两个 LRU 链表)和 MySQL (划分两个区域)通过改进传统的 LRU 数据结构,避免了预读失效带来的影响。
但是如果还是使用「只要数据被访问一次,就将数据加入到活跃 LRU 链表头部(或者 young 区域)」这种方式的话,那么还存在缓存污染的问题。
当我们在批量读取数据的时候,由于数据被访问了一次,这些大量数据都会被加入到「活跃 LRU 链表」里,然后之前缓存在活跃 LRU 链表(或者 young 区域)里的热点数据全部都被淘汰了,如果这些大量的数据在很长一段时间都不会被访问的话,那么整个活跃 LRU 链表(或者 young 区域)就被污染了。
缓存污染会带来什么问题?
缓存污染带来的影响就是很致命的,等这些热数据又被再次访问的时候,由于缓存未命中,就会产生大量的磁盘 I/O,系统性能就会急剧下降。
我以 MySQL 举例子,Linux 发生缓存污染的现象也是类似。
当某一个 SQL 语句扫描了大量的数据时,在 Buffer Pool 空间比较有限的情况下,可能会将 Buffer Pool 里的所有页都替换出去,导致大量热数据被淘汰了,等这些热数据又被再次访问的时候,由于缓存未命中,就会产生大量的磁盘 I/O,MySQL 性能就会急剧下降。
注意, 缓存污染并不只是查询语句查询出了大量的数据才出现的问题,即使查询出来的结果集很小,也会造成缓存污染。
select * from t_user where name like "%xiaolin%";
可能这个查询出来的结果就几条记录,但是由于这条语句会发生索引失效,所以这个查询过程是全表扫描的,接着会发生如下的过程:
- 从磁盘读到的页加入到 LRU 链表的 old 区域头部;
- 当从页里读取行记录时,也就是页被访问的时候,就要将该页放到 young 区域头部;
- 接下来拿行记录的 name 字段和字符串 xiaolin 进行模糊匹配,如果符合条件,就加入到结果集里;
- 如此往复,直到扫描完表中的所有记录。
经过这一番折腾,由于这条 SQL 语句访问的页非常多,每访问一个页,都会将其加入 young 区域头部,那么原本 young 区域的热点数据都会被替换掉,导致缓存命中率下降。那些在批量扫描时,而被加入到 young 区域的页,如果在很长一段时间都不会再被访问的话,那么就污染了 young 区域。
怎么避免缓存污染造成的影响?
前面的 LRU 算法只要数据被访问一次,就将数据加入活跃 LRU 链表(或者 young 区域),这种 LRU 算法进入活跃 LRU 链表的门槛太低了!正式因为门槛太低,才导致在发生缓存污染的时候,很容就将原本在活跃 LRU 链表里的热点数据淘汰了。
所以,只要我们提高进入到活跃 LRU 链表(或者 young 区域)的门槛,就能有效地保证活跃 LRU 链表(或者 young 区域)里的热点数据不会被轻易替换掉。
Linux 操作系统和 MySQL Innodb 存储引擎分别是这样提高门槛的:
- Linux 操作系统:在内存页被访问第二次的时候,才将页从 inactive list 升级到 active list 里。
- MySQL Innodb:在内存页被访问第二次的时候,并不会马上将该页从 old 区域升级到 young 区域,因为还要进行停留在 old 区域的时间判断:
- 如果第二次的访问时间与第一次访问的时间在 1 秒内(默认值),那么该页就不会被从 old 区域升级到 young 区域;
- 如果第二次的访问时间与第一次访问的时间超过 1 秒,那么该页就会从 old 区域升级到 young 区域;
提高了进入活跃 LRU 链表(或者 young 区域)的门槛后,就很好了避免缓存污染带来的影响。
在批量读取数据时候,如果这些大量数据只会被访问一次,那么它们就不会进入到活跃 LRU 链表(或者 young 区域),也就不会把热点数据淘汰,只会待在非活跃 LRU 链表(或者 old 区域)中,后续很快也会被淘汰。
进程管理
进程
进程的状态
如果有大量处于阻塞状态的进程,进程可能会占用着物理内存空间,显然不是我们所希望的,毕竟物理内存空间是有限的,被阻塞状态的进程占用着物理内存就一种浪费物理内存的行为。
所以,在虚拟内存管理的操作系统中,通常会把阻塞状态的进程的物理内存空间换出到硬盘,等需要再次运行的时候,再从硬盘换入到物理内存。
那么,就需要一个新的状态,**来描述进程没有占用实际的物理内存空间的情况,这个状态就是挂起状态。**这跟阻塞状态是不一样,阻塞状态是等待某个事件的返回。
另外,挂起状态可以分为两种:
- 阻塞挂起状态:进程在外存(硬盘)并等待某个事件的出现;
- 就绪挂起状态:进程在外存(硬盘),但只要进入内存,即刻立刻运行;
这两种挂起状态加上前面的五种状态,就变成了七种状态变迁(留给我的颜色不多了),见如下图:
进程的控制结构
在操作系统中,是用进程控制块(process control block,PCB)数据结构来描述进程的。
PCB 是进程存在的唯一标识,这意味着一个进程的存在,必然会有一个 PCB,如果进程消失了,那么 PCB 也会随之消失。
:::info
每个 PCB 是如何组织的呢?
:::
通常是通过链表的方式进行组织,把具有相同状态的进程链在一起,组成各种队列。比如:
- 将所有处于就绪状态的进程链在一起,称为就绪队列;
- 把所有因等待某事件而处于等待状态的进程链在一起就组成各种阻塞队列;
- 另外,对于运行队列在单核 CPU 系统中则只有一个运行指针了,因为单核 CPU 在某个时间,只能运行一个程序。
那么,就绪队列和阻塞队列链表的组织形式如下图:
进程的上下文切换
各个进程之间是共享 CPU 资源的,在不同的时候进程之间需要切换,让不同的进程可以在 CPU 执行,那么这个一个进程切换到另一个进程运行,称为进程的上下文切换。
** 进程是由内核管理和调度的,所以进程的切换只能发生在内核态。 **
所以,进程的上下文切换不仅包含了虚拟内存、栈、全局变量等用户空间的资源,还包括了内核堆栈、寄存器等内核空间的资源。
通常,会把交换的信息保存在进程的 PCB,当要运行另外一个进程的时候,我们需要从这个进程的 PCB 取出上下文,然后恢复到 CPU 中,这使得这个进程可以继续执行,如下图所示:
处理器要去执行线程A的程序代码时,并不是仅有代码程序就能跑得起来,程序是数据与代码的组合体,代码执行时还必须要有上下文数据的支撑。而这里说的“上下文”,以操作系统和硬件的角度来看,是存储在内存、缓存和寄存器中的一个个具体数值当中断发生,从线程A切换到线程B去执行之前,操作系统首先要把线程A的上下文数据妥善保管好,然后把寄存器、内存分页等恢复到线程B挂起时候的状态,这样线程B被重新激活后才能仿佛从来没有被挂起过。这种保护和恢复现场的工作,免不了涉及一系列数据在各种寄存器、缓存中的来回拷贝,不可能是一种轻量级的操作。
:::info
发生进程上下文切换有哪些场景?
:::
- 为了保证所有进程可以得到公平调度,CPU 时间被划分为一段段的时间片,这些时间片再被轮流分配给各个进程。这样,当某个进程的时间片耗尽了,进程就从运行状态变为就绪状态,系统从就绪队列选择另外一个进程运行;
- 进程在系统资源不足(比如内存不足)时,要等到资源满足后才可以运行,这个时候进程也会被挂起,并由系统调度其他进程运行;
- 当进程通过睡眠函数 sleep 这样的方法将自己主动挂起时,自然也会重新调度;
- 当有优先级更高的进程运行时,为了保证高优先级进程的运行,当前进程会被挂起,由高优先级进程来运行;
- 发生硬件中断时,CPU 上的进程会被中断挂起,转而执行内核中的中断服务程序;
线程
在早期的操作系统中都是以进程作为独立运行的基本单位,直到后面,计算机科学家们又提出了更小的能独立运行的基本单位,也就是线程。
线程和进程的区别是什么?
- 本质区别:进程是操作系统资源分配的基本单位,而线程是任务调度和执行的基本单位
- 在开销方面:每个进程都有独立的代码和数据空间(程序上下文),程序之间的切换会有较大的开销;线程可以看做轻量级的进程,同一类线程共享代码和数据空间,每个线程都有自己独立的运行栈和程序计数器(PC),线程之间切换的开销小
- 稳定性方面:进程中某个线程如果崩溃了,可能会导致整个进程都崩溃。而进程中的子进程崩溃,并不会影响其他进程。
- 内存分配方面:系统在运行的时候会为每个进程分配不同的内存空间;而对线程而言,除了CPU外,系统不会为线程分配内存(线程所使用的资源来自其所属进程的资源),线程组之间只能共享资源
- 包含关系:没有线程的进程可以看做是单线程的,如果一个进程内有多个线程,则执行过程不是一条线的,而是多条线
线程的上下文切换
在前面我们知道了,线程与进程最大的区别在于:线程是调度的基本单位,而进程则是资源拥有的基本单位。
所以,所谓操作系统的任务调度,实际上的调度对象是线程,而进程只是给线程提供了虚拟内存、全局变量等资源。
对于线程和进程,我们可以这么理解:
- 当进程只有一个线程时,可以认为进程就等于线程;
- 当进程拥有多个线程时,这些线程会共享相同的虚拟内存和全局变量等资源,这些资源在上下文切换时是不需要修改的;
另外,线程也有自己的私有数据,比如栈和寄存器等,这些在上下文切换时也是需要保存的。
:::info
线程上下文切换的是什么?
:::
这还得看线程是不是属于同一个进程:
- 当两个线程不是属于同一个进程,则切换的过程就跟进程上下文切换一样;
- 当两个线程是属于同一个进程,因为虚拟内存是共享的,所以在切换时,虚拟内存这些资源就保持不动,只需要切换线程的私有数据、寄存器等不共享的数据;
所以,线程的上下文切换相比进程,开销要小很多。
线程的实现
实现线程主要有三种方式:使用内核线程实现(1:1实现),使用用户线程实现(1:N实现),使用用户线程加轻量级进程混合实现(N:M实现)。
内核线程实现
内核线程就是直接由操作系统内核支持的线程,这种线程由内核来完成线程切换,内核通过操纵调度器对线程进行调度,并负责将线程的任务映射到各个处理器上。
程序一般不会直接使用内核线程,而是使用内核线程的一种高级接口——轻量级进程,轻量级进程就是我们通常意义上所讲的线程,由于每个轻量级进程都由一个内核线程支持,因此只有先支持内核线程,才能有轻量级进程。
轻量级进程也具有它的局限性:
- 首先,由于是基于内核线程实现的,**所以各种线程操作,如创建、析构及同步,都需要进行系统调用。**而系统调用的代价相对较高,需要在用户态和内核态来回切换。
- 其次,每个轻量级进程都需要有一个内核线程的支持,因此轻量级进程要消耗一定的内核资源(如内核线程的栈空间),因此一个系统支持轻量级进程的数量是有限的。
用户线程实现
广义上来讲,一个线程只要不是内核线程,都可以认为是用户线程的一种。
而**狭义上的用户线程指的是完全建立在用户空间的线程库上,**系统内核不能感知到用户线程的存在及如何实现的。用户线程的建立、同步、销毁和调度完全在用户态中完成,不需要内核的帮助。如果程序实现得当,这种线程不需要切换到内核态,因此操作可以是非常快速且低消耗的,也能够支持规模更大的线程数量,部分高性能数据库中的多线程就是由用户线程实现的。
- 用户线程的优势在于不需要系统内核支援,劣势也在于没有系统内核的支援,所有的线程操作都需要由用户程序自己去处理。
- 线程的创建、销毁、切换和调度都是用户必须考虑的问题,而且由于操作系统只把处理器资源分配到进程,那诸如“阻塞如何处理”“多处理器系统中如何将线程映射到其他处理器上”这类问题解决起来将会异常困难,甚至有些是不可能实现的。
混合实现
线程除了依赖内核线程实现和完全由用户程序自己实现之外,还有一种将内核线程与用户线程一起使用的实现方式,被称为N:M实现。在这种混合实现下,既存在用户线程,也存在轻量级进程。
- 用户线程还是完全建立在用户空间中,因此用户线程的创建、切换、析构等操作依然廉价,并且可以支持大规模的用户线程并发。
- 而操作系统支持的轻量级进程则作为用户线程和内核线程之间的桥梁,这样可以使用内核提供的线程调度功能及处理器映射,并且用户线程的系统调用要通过轻量级进程来完成,这大大降低了整个进程被完全阻塞的风险。
Java线程实现
Java线程如何实现并不受Java虚拟机规范的约束,这是一个与具体虚拟机相关的话题。Java线程在早期的Classic虚拟机上(JDK 1.2以前),是基于一种被称为“绿色线程”(Green Threads)的用户线程实现的,但从JDK 1.3起,“主流”平台上的“主流”商用Java虚拟机的线程模型普遍都被替换为基于操作系统原生线程模型来实现,即采用1:1的线程模型。
以HotSpot为例,它的每一个Java线程都是直接映射到一个操作系统原生线程来实现的,而且中间没有额外的间接结构,所以HotSpot自己是不会去干涉线程调度的(可以设置线程优先级给操作系统提供调度建议),全交给底下的操作系统去处理,所以何时冻结或唤醒线程、该给线程分配多少处理器执行时间、该把线程安排给哪个处理器核心去执行等,都是由操作系统完成的,也都是由操作系统全权决定的。
前面强调是两个“主流”,那就说明肯定还有例外的情况。
操作系统支持怎样的线程模型,在很大程度上会影响上面的Java虚拟机的线程是怎样映射的,这一点在不同的平台上很难达成一致,因此《Java虚拟机规范》中才不去限定Java线程需要使用哪种线程模型来实现。线程模型只对线程的并发规模和操作成本产生影响,对Java程序的编码和运行过程来说,这些差异都是完全透明的。
由于每个进程的用户空间都是独立的,不能相互访问,这时就需要借助内核空间来实现进程间通信,原因很简单,每个进程都是共享一个内核空间。
进程通信
Linux 内核提供了不少进程间通信的方式,其中最简单的方式就是管道,管道分为**「匿名管道」和「命名管道」。**
匿名管道顾名思义,它没有名字标识,匿名管道是特殊文件只存在于内存,没有存在于文件系统中,shell 命令中的「|」竖线就是匿名管道,通信的数据是无格式的流并且大小受限,通信的方式是单向的,数据只能在一个方向上流动,如果要双向通信,需要创建两个管道,再来匿名管道是只能用于存在父子关系的进程间通信,匿名管道的生命周期随着进程创建而建立,随着进程终止而消失。
命名管道突破了匿名管道只能在亲缘关系进程间的通信限制,因为使用命名管道的前提,需要在文件系统创建一个类型为 p 的设备文件,那么毫无关系的进程就可以通过这个设备文件进行通信。另外,不管是匿名管道还是命名管道,进程写入的数据都是缓存在内核中,另一个进程读取数据时候自然也是从内核中获取,同时通信数据都遵循先进先出原则,不支持 lseek 之类的文件定位操作。
消息队列克服了管道通信的数据是无格式的字节流的问题,消息队列实际上是保存在内核的**「消息链表」,消息队列的消息体是可以用户自定义的数据类型**,发送数据时,会被分成一个一个独立的消息体,当然接收数据时,也要与发送方发送的消息体的数据类型保持一致,这样才能保证读取的数据是正确的。消息队列通信的速度不是最及时的,毕竟每次数据的写入和读取都需要经过用户态与内核态之间的拷贝过程。
共享内存可以解决消息队列通信中用户态与内核态之间数据拷贝过程带来的开销,它直接分配一个共享空间,每个进程都可以直接访问,就像访问进程自己的空间一样快捷方便,不需要陷入内核态或者系统调用,大大提高了通信的速度,享有最快的进程间通信方式之名。但是便捷高效的共享内存通信,带来新的问题,多进程竞争同个共享资源会造成数据的错乱。
**那么,就需要信号量来保护共享资源,以确保任何时刻只能有一个进程访问共享资源,这种方式就是互斥访问。信号量不仅可以实现访问的互斥性,还可以实现进程间的同步,信号量其实是一个计数器,表示的是资源个数,其值可以通过两个原子操作来控制,分别是 P 操作和 V 操作。
前面说到的通信机制,都是工作于同一台主机,如果要与不同主机的进程间通信,那么就需要 Socket 通信了。**Socket 实际上不仅用于不同的主机进程间通信,还可以用于本地主机进程间通信,可根据创建 Socket 的类型不同,分为三种常见的通信方式,一个是基于 TCP 协议的通信方式,一个是基于 UDP 协议的通信方式,一个是本地进程间通信方式。
:::info
以上,就是进程间通信的主要机制了。你可能会问了,那线程通信间的方式呢?
:::
同个进程下的线程之间都是共享进程的资源,只要是共享变量都可以做到线程间通信,比如全局变量,所以对于线程间关注的不是通信方式,而是关注多线程竞争共享资源的问题,信号量也同样可以在线程间实现互斥与同步:
- 互斥的方式,可保证任意时刻只有一个线程访问共享资源;
- 同步的方式,可保证线程 A 应在线程 B 之前执行;
多线程冲突
互斥的概念
保证一个线程在临界区执行时,其他线程应该被阻止进入临界区,这就是互斥的概念。
同步的概念
所谓同步,就是并发进程/线程在一些关键点上可能需要互相等待与互通消息,这种相互制约的等待与互通信息称为进程/线程同步。
注意,同步与互斥是两种不同的概念:
- 同步就好比:「操作 A 应在操作 B 之前执行」,「操作 C 必须在操作 A 和操作 B 都完成之后才能执行」等;
- 互斥就好比:「操作 A 和操作 B 不能在同一时刻执行」;
互斥与同步的实现和使用
在进程/线程并发执行的过程中,进程/线程之间存在协作的关系,例如有互斥、同步的关系。
为了实现进程/线程间正确的协作,操作系统必须提供实现进程协作的措施和方法,主要的方法有两种:
- 锁:加锁、解锁操作;
- 信号量:P、V 操作;
这两个都可以方便地实现进程/线程互斥,而信号量比锁的功能更强一些,它还可以方便地实现进程/线程同步。
信号量
信号量是操作系统提供的一种协调共享资源访问的方法。
通常信号量表示资源的数量,对应的变量是一个整型(sem)变量。
另外,还有两个原子操作的系统调用函数来控制信号量的,分别是:
- P 操作:将 sem 减 1,相减后,如果 sem < 0,则进程/线程进入阻塞等待,否则继续,表明 P 操作可能会阻塞;
- V 操作:将 sem 加 1,相加后,如果 sem <= 0,唤醒一个等待中的进程/线程,表明 V 操作不会阻塞;
我们先来说说如何使用信号量实现临界区的互斥访问。
为每类共享资源设置一个信号量 s,其初值为** 1**
,表示该临界资源未被占用。
只要把进入临界区的操作置于 P(s) 和 V(s) 之间,即可实现进程/线程互斥:
此时,任何想进入临界区的线程,必先在互斥信号量上执行 P 操作,在完成对临界资源的访问后再执行 V 操作。由于互斥信号量的初始值为 1,故在第一个线程执行 P 操作后 s 值变为 0,表示临界资源为空闲,可分配给该线程,使之进入临界区。
若此时又有第二个线程想进入临界区,也应先执行 P 操作,结果使 s 变为负值,这就意味着临界资源已被占用,因此,第二个线程被阻塞。
并且,直到第一个线程执行 V 操作,释放临界资源而恢复 s 值为 0 后,才唤醒第二个线程,使之进入临界区,待它完成临界资源的访问后,又执行 V 操作,使 s 恢复到初始值 1。
对于两个并发线程,互斥信号量的值仅取 1、0 和 -1 三个值,分别表示:
- 如果互斥信号量为 1,表示没有线程进入临界区;
- 如果互斥信号量为 0,表示有一个线程进入临界区;
- 如果互斥信号量为 -1,表示一个线程进入临界区,另一个线程等待进入。
通过互斥信号量的方式,就能保证临界区任何时刻只有一个线程在执行,就达到了互斥的效果。.
再来,我们说说如何使用信号量实现事件同步。
同步的方式是设置一个信号量,其初值为** 0**
。
生产者-消费者问题
生产者-消费者问题描述:
- 生产者在生成数据后,放在一个缓冲区中;
- 消费者从缓冲区取出数据处理;
- 任何时刻,只能有一个生产者或消费者可以访问缓冲区;
我们对问题分析可以得出:
- 任何时刻只能有一个线程操作缓冲区,说明操作缓冲区是临界代码,需要互斥;
- 缓冲区空时,消费者必须等待生产者生成数据;缓冲区满时,生产者必须等待消费者取出数据。说明生产者和消费者需要同步。
那么我们需要三个信号量,分别是:
- 互斥信号量
mutex
:用于互斥访问缓冲区,初始化值为 1 - 资源信号量
fullBuffers
:用于消费者询问缓冲区是否有数据,有数据则读取数据,初始化值为 0(表明缓冲区一开始为空); - 资源信号量
emptyBuffers
:用于生产者询问缓冲区是否有空位,有空位则生成数据,初始化值为 n (缓冲区大小);
哲学家就餐问题
那么问题来了,如何保证哲 学家们的动作有序进行,而不会出现有人永远拿不到叉子呢?
:::info
方案一
:::
我们用信号量的方式,也就是 PV 操作来尝试解决它,代码如下:
不过,这种解法存在一个极端的问题:假设五位哲学家同时拿起左边的叉子,桌面上就没有叉子了, 这样就没有人能够拿到他们右边的叉子,也就说每一位哲学家都会在 P(fork[(i + 1) % N ]) 这条语句阻塞了,很明显这发生了死锁的现象。
:::info
方案二
:::
既然「方案一」会发生同时竞争左边叉子导致死锁的现象,那么我们就在拿叉子前,加个互斥信号量,代码如下:
上面程序中的互斥信号量的作用就在于,只要有一个哲学家进入了「临界区」,也就是准备要拿叉子时,其他哲学家都不能动,只有这位哲学家用完叉子了,才能轮到下一个哲学家进餐。
方案二虽然能让哲学家们按顺序吃饭,但是每次进餐只能有一位哲学家,而桌面上是有 5 把叉子,按道理是能可以有两个哲学家同时进餐的,所以从效率角度上,这不是最好的解决方案。
:::info
方案三
:::
那既然方案二使用互斥信号量,会导致只能允许一个哲学家就餐,那么我们就不用它。
另外,方案一的问题在于,会出现所有哲学家同时拿左边刀叉的可能性,那我们就避免哲学家可以同时拿左边的刀叉,采用分支结构,根据哲学家的编号的不同,而采取不同的动作。
即让偶数编号的哲学家「先拿左边的叉子后拿右边的叉子」,奇数编号的哲学家「先拿右边的叉子后拿左边的叉子」。
上面的程序,在 P 操作时,根据哲学家的编号不同,拿起左右两边叉子的顺序不同。另外,V 操作是不需要分支的,因为 V 操作是不会阻塞的。
方案三既不会出现死锁,也可以两人同时进餐。
:::info
方案四
:::
在这里再提出另外一种可行的解决方案,我们用一个数组 state 来记录每一位哲学家的三个状态,分别是在进餐状态、思考状态、饥饿状态(正在试图拿叉子)。
那么,一个哲学家只有在两个邻居都没有进餐时,才可以进入进餐状态。
第 i 个哲学家的左邻右舍,则由宏 LEFT 和 RIGHT 定义:
- LEFT : ( i + 5 - 1 ) % 5
- RIGHT : ( i + 1 ) % 5
比如 i 为 2,则 LEFT 为 1,RIGHT 为 3。
读者-写者问题
另外,还有个著名的问题是「读者-写者」,它为数据库访问建立了一个模型。
读者只会读取数据,不会修改数据,而写者即可以读也可以修改数据。
读者-写者的问题描述:
-
「读-读」允许:同一时刻,允许多个读者同时读
-
「读-写」互斥:没有写者时读者才能读,没有读者时写者才能写
-
「写-写」互斥:没有其他写者时,写者才能写
:::info
方案一
:::
使用信号量的方式来尝试解决: -
信号量
wMutex
:控制写操作的互斥信号量,初始值为 1 ; -
读者计数
rCount
:正在进行读操作的读者个数,初始化为 0; -
信号量
rCountMutex
:控制对 rCount 读者计数器的互斥修改,初始值为 1;
上面的这种实现,是读者优先的策略,因为只要有读者正在读的状态,后来的读者都可以直接进入,如果读者持续不断进入,则写者会处于饥饿状态。
:::info
方案二
:::
那既然有读者优先策略,自然也有写者优先策略:
- 只要有写者准备要写入,写者应尽快执行写操作,后来的读者就必须阻塞;
- 如果有写者持续不断写入,则读者就处于饥饿;
在方案一的基础上新增如下变量:
- 信号量
rMutex
:控制读者进入的互斥信号量,初始值为 1; - 信号量
wDataMutex
:控制写者写操作的互斥信号量,初始值为 1; - 写者计数
wCount
:记录写者数量,初始值为 0; - 信号量
wCountMutex
:控制 wCount 互斥修改,初始值为 1;
具体实现如下代码:
:::info
方案三
:::
既然读者优先策略和写者优先策略都会造成饥饿的现象,那么我们就来实现一下公平策略。
公平策略:
- 优先级相同;
- 写者、读者互斥访问;
- 只能一个写者访问临界区;
- 可以有多个读者同时访问临界资源;
具体代码实现
死锁的概念
在多线程编程中,我们为了防止多线程竞争共享资源而导致数据错乱,都会在操作共享资源之前加上互斥锁,只有成功获得到锁的线程,才能操作共享资源,获取不到锁的线程就只能等待,直到锁被释放。
那么,当两个线程为了保护两个不同的共享资源而使用了两个互斥锁,那么这两个互斥锁应用不当的时候,可能会造成两个线程都在等待对方释放锁,在没有外力的作用下,这些线程会一直相互等待,就没办法继续运行,这种情况就是发生了死锁。
举个例子,小林拿了小美房间的钥匙,而小林在自己的房间里,小美拿了小林房间的钥匙,而小美也在自己的房间里。如果小林要从自己的房间里出去,必须拿到小美手中的钥匙,但是小美要出去,又必须拿到小林手中的钥匙,这就形成了死锁。
死锁只有同时满足以下四个条件才会发生:
- 互斥条件;
- 持有并等待条件;
- 不可剥夺条件;
- 环路等待条件;
互斥条件
互斥条件是指**多个线程不能同时使用同一个资源**。
持有并等待条件
持有并等待条件是指,当线程 A 已经持有了资源 1,又想申请资源 2,而资源 2 已经被线程 C 持有了**,所以线程 A 就会处于等待状态**,但是线程 A 在等待资源 2 的同时并不会释放自己已经持有的资源 1。
不可剥夺条件
不可剥夺条件是指,当线程已经持有了资源 ,在自己使用完之前不能被其他线程获取,线程 B 如果也想使用此资源,则只能在线程 A 使用完并释放后才能获取。
环路等待条件
环路等待条件指的是,在死锁发生的时候,**两个线程获取资源的顺序构成了环形链**。
写一个死锁:
class Main{
private static Object lock1 = new Object();
private static Object lock2 = new Object();
public static void main(String[] args) {
Thread t1 = new Thread(() -> {
synchronized (lock1){
try {
System.out.println("Thread1: Holding lock1...");
Thread.sleep(1000);
synchronized (lock2){
System.out.println("Thread1: Holding lock1 & lock2...");
}
}catch (Exception e){
e.printStackTrace();
}
}
}
,"Thread1");
Thread t2 = new Thread(() -> {
synchronized (lock2){
try {
System.out.println("Thread2: Holding lock2...");
Thread.sleep(1000);
synchronized (lock1){
System.out.println("Thread2: Holding lock2 & lock1...");
}
}catch (Exception e){
e.printStackTrace();
}
}
},"Thread2");
t1.start();
t2.start();
}
}
避免死锁问题的发生
那么避免死锁问题就只需要破环其中一个条件就可以,最常见的并且可行的就是使用资源有序分配法,来破环环路等待条件。
那什么是资源有序分配法呢?
线程 A 和 线程 B 获取资源的顺序要一样,当线程 A 是先尝试获取资源 A,然后尝试获取资源 B 的时候,线程 B 同样也是先尝试获取资源 A,然后尝试获取资源 B。也就是说,线程 A 和 线程 B 总是以相同的顺序申请自己想要的资源。
一个进程最多可以创建多少个线程?
- 32 位系统,用户态的虚拟空间只有 3G,如果创建线程时分配的栈空间是 10M,那么一个进程最多只能创建 300 个左右的线程。
- 64 位系统,用户态的虚拟空间大到有 128T,理论上不会受虚拟内存大小的限制,而会受系统的参数或性能限制。
线程崩溃,进程一定会崩溃吗
一般来说如果线程是因为非法访问内存引起的崩溃,那么进程肯定会崩溃,为什么系统要让进程崩溃呢,这主要是因为在进程中,各个线程的地址空间是共享的,既然是共享,那么某个线程对地址的非法访问就会导致内存的不确定性,进而可能会影响到其他线程,这种操作是危险的,操作系统会认为这很可能导致一系列严重的后果,于是干脆让整个进程崩溃。
进程是如何崩溃的-信号机制简介
那么线程崩溃后,进程是如何崩溃的呢,这背后的机制到底是怎样的,答案是信号。
大家想想要干掉一个正在运行的进程是不是经常用 kill -9 pid 这样的命令,这里的 kill 其实就是给指定 pid 发送终止信号的意思,其中的 9 就是信号。
当然了发 kill 信号必须具有一定的权限,否则任意进程都可以通过发信号来终止其他进程,那显然是不合理的,实际上 kill 执行的是系统调用,将控制权转移给了内核(操作系统),由内核来给指定的进程发送信号
:::info
那么发个信号进程怎么就崩溃了呢,这背后的原理到底是怎样的?
:::
其背后的机制如下
- CPU 执行正常的进程指令
- 调用 kill 系统调用向进程发送信号
- 进程收到操作系统发的信号,CPU 暂停当前程序运行,并将控制权转交给操作系统
- 调用 kill 系统调用向进程发送信号(假设为 11,即 SIGSEGV,一般非法访问内存报的都是这个错误)
- 操作系统根据情况执行相应的信号处理程序(函数),一般执行完信号处理程序逻辑后会让进程退出
注意上面的第五步,如果进程没有注册自己的信号处理函数,那么操作系统会执行默认的信号处理程序(一般最后会让进程退出),但如果注册了,则会执行自己的信号处理函数,这样的话就给了进程一个垂死挣扎的机会,它收到 kill 信号后,可以调用 exit() 来退出,但也可以使用 **sigsetjmp**
,**siglongjmp**
** 这两个函数来恢复进程的执行**
所以,一道经典的面试题是:如何让正在运行的 Java 工程的优雅停机?
通过上面的介绍大家不难发现,其实是 JVM 自己定义了信号处理函数,这样当发送 kill pid 命令(默认会传 15 也就是 SIGTERM)后,JVM 就可以在信号处理函数中执行一些资源清理之后再调用 exit 退出。
这种场景显然不能用 kill -9,不然一下把进程干掉了资源就来不及清除了。
为什么线程崩溃不会导致 JVM 进程崩溃
现在我们再来看看开头这个问题,相信你多少会心中有数,想想看在 Java 中有哪些是常见的由于非法访问内存而产生的 Exception 或 error 呢,常见的是大家熟悉的 StackoverflowError
或者NullPointerException
,NPE 我们都了解,属于是访问了不存在的内存。
但为什么栈溢出(Stackoverflow)也属于非法访问内存呢,这得简单聊一下进程的虚拟空间,也就是前面提到的共享地址空间。
现代操作系统为了保护进程之间不受影响,所以使用了虚拟地址空间来隔离进程,进程的寻址都是针对虚拟地址,每个进程的虚拟空间都是一样的,而线程会共用进程的地址空间。
以 32 位虚拟空间,进程的虚拟空间分布如下:
那么 stackoverflow
是怎么发生的呢?
进程每调用一个函数,都会分配一个栈桢,然后在栈桢里会分配函数里定义的各种局部变量。
假设现在调用了一个无限递归的函数,那就会持续分配栈帧,但 stack 的大小是有限的(Linux 中默认为 8 M,可以通过 ulimit -a 查看),如果无限递归很快栈就会分配完了,此时再调用函数试图分配超出栈的大小内存,就会发生段错误,也就是 stackoverflowError
。
好了,现在我们知道了 StackoverflowError 怎么产生的。
那问题来了,既然 StackoverflowError 或者 NPE 都属于非法访问内存, JVM 为什么不会崩溃呢?
有了上一节的铺垫,相信你不难回答,其实就是因为 JVM 自定义了自己的信号处理函数,拦截了 SIGSEGV
信号,针对这两者不让它们崩溃。
openJDK 源码解析
JVM_handle_linux_signal(int sig,siginfo_t* info,void* ucVoid,int abort_if_unrecognized){
// 这段代码里会调用 siglongjmp,主要做线程恢复之用
os::ThreadCrashProtection::check_crash_protection(sig, t);
if (info != NULL && uc != NULL && thread != NULL) {
pc = (address) os::Linux::ucontext_get_pc(uc);
// Handle ALL stack overflow variations here
if (sig == SIGSEGV) {
// Si_addr may not be valid due to a bug in the linux-ppc64 kernel (see
// comment below). Use get_stack_bang_address instead of si_addr.
address addr = ((NativeInstruction*)pc)->get_stack_bang_address(uc);
// 判断是否栈溢出了
if (addr < thread->stack_base() &&
addr >= thread->stack_base() - thread->stack_size()) {
if (thread->thread_state() == _thread_in_Java) { // 针对栈溢出 JVM 的内部处理
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
}
}
}
}
if (sig == SIGSEGV &&
!MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
// 此处会做空指针检查
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
}
// 如果是栈溢出或者空指针最终会返回 true,不会走最后的 report_and_die,所以 JVM 不会退出
if (stub != NULL) {
// save all thread context in case we need to restore it
if (thread != NULL) thread->set_saved_exception_pc(pc);
uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
// 返回 true 代表 JVM 进程不会退出
return true;
}
VMError err(t, sig, pc, info, ucVoid);
// 生成 hs_err_pid_xxx.log 文件并退出
err.report_and_die();
ShouldNotReachHere();
return true; // Mute compiler
}
从以上代码我们可以知道以下信息:
- 发生
stackoverflow
还有NullPointerException
错误,确实都发送了SIGSEGV
,只是虚拟机不选择退出,而是自己内部作了额外的处理,其实是恢复了线程的执行,并抛出 StackoverflowError 和 NPE,这就是为什么 JVM 不会崩溃且我们能捕获这两个错误/异常的原因。 - 如果针对
SIGSEGV
等信号,在以上的函数中 JVM 没有做额外的处理,那么最终会走到**report_and_die**
这个方法,这个方法主要做的事情是生成**hs_err_pid_xxx.log**
crash 文件(记录了一些堆栈信息或错误),然后退出。
至此我相信大家明白了为什么发生了 StackoverflowError 和 NPE 这两个非法访问内存的错误,JVM 却没有崩溃。
原因其实就是虚拟机内部定义了信号处理函数,而在信号处理函数中对这两者做了额外的处理以让 JVM 不崩溃,另一方面也可以看出如果 JVM 不对信号做额外的处理,最后会自己退出并产生 crash 文件 hs_err_pid_xxx.log
,这个文件记录了虚拟机崩溃的重要原因。
所以也可以说,虚拟机是否崩溃只要看它是否会产生此崩溃日志文件。
参考:小林coding、深入理解java虚拟机,周志明