【Python数值分析】革命:引领【数学建模】新时代的插值与拟合前沿技术

news2024/9/20 16:50:17

目录

​编辑

第一部分:插值的基本原理及应用

1. 插值的基本原理

1.1 插值多项式

1.2 拉格朗日插值 

1.3 牛顿插值 

1.4 样条插值

2. 插值的Python实现

2.1 使用 NumPy 进行插值

2.2 使用 SciPy 进行插值

2.2.1 一维插值

​编辑

2.2.2 二维插值

3. 插值的应用场景

3.1 数据平滑和填补

3.2 图像处理

​编辑

3.3 数值模拟

4. 实例分析

实例1:空气质量数据的校准

​编辑

实例2:波浪能最大输出功率设计

第二部分:拟合的基本原理及应用

1. 拟合的基本原理

1.1 线性拟合

1.2 多项式拟合

1.3 指数拟合

​编辑

1.4 对数拟合

​编辑

1.5 幂函数拟合

2. 拟合的Python实现

2.1 使用 SciPy 进行拟合

2.1.1 线性拟合

2.1.2 多项式拟合

2.1.3 指数拟合

2.1.4 对数拟合

2.1.5 幂函数拟合

3. 拟合的应用场景

3.1 数据预测

3.2 数据建模

3.3 物理实验数据分析

3.4 工程设计

4. 实例分析

实例1:股票价格预测

实例2:温度变化分析

总结 


731bd47804784fa2897220a90a387b28.gif

专栏:数学建模学习笔记

第一部分:插值的基本原理及应用

1. 插值的基本原理

插值是一种在已知数据点之间估算函数值的方法。它在数据分析、信号处理和数值分析中具有广泛应用。插值的目标是通过构造一个插值函数,使该函数在给定的数据点处具有精确的函数值。

1.1 插值多项式

1.2 拉格朗日插值 

import numpy as np
import matplotlib.pyplot as plt

# 拉格朗日基函数
def lagrange_basis(x, x_values, j):
    basis = 1
    for i in range(len(x_values)):
        if i != j:
            basis *= (x - x_values[i]) / (x_values[j] - x_values[i])
    return basis

# 拉格朗日插值多项式
def lagrange_interpolation(x, x_values, y_values):
    interpolation = 0
    for j in range(len(y_values)):
        interpolation += y_values[j] * lagrange_basis(x, x_values, j)
    return interpolation

# 数据点
x_values = np.array([0, 1, 2, 3, 4, 5])
y_values = np.array([1, 3, 2, 5, 7, 8])

# 插值点
x_interp = np.linspace(0, 5, 100)
y_interp = [lagrange_interpolation(x, x_values, y_values) for x in x_interp]

# 绘图
plt.plot(x_values, y_values, 'o', label='Data points')
plt.plot(x_interp, y_interp, '-', label='Lagrange Interpolation')
plt.legend()
plt.xlabel('x')
plt.ylabel('y')
plt.show()

 

1.3 牛顿插值 

import numpy as np
import matplotlib.pyplot as plt

# 计算差分商
def divided_diff(x_values, y_values):
    n = len(x_values)
    coef = np.zeros([n, n])
    coef[:,0] = y_values
    
    for j in range(1,n):
        for i in range(n-j):
            coef[i][j] = (coef[i+1][j-1] - coef[i][j-1]) / (x_values[i+j] - x_values[i])
    
    return coef[0,:]

# 牛顿插值多项式
def newton_interpolation(x, x_values, coef):
    n = len(x_values) - 1 
    p = coef[n]
    for k in range(1,n+1):
        p = coef[n-k] + (x -x_values[n-k])*p
    return p

# 数据点
x_values = np.array([0, 1, 2, 3, 4, 5])
y_values = np.array([1, 3, 2, 5, 7, 8])

# 计算差分商系数
coef = divided_diff(x_values, y_values)

# 插值点
x_interp = np.linspace(0, 5, 100)
y_interp = [newton_interpolation(x, x_values, coef) for x in x_interp]

# 绘图
plt.plot(x_values, y_values, 'o', label='Data points')
plt.plot(x_interp, y_interp, '-', label='Newton Interpolation')
plt.legend()
plt.xlabel('x')
plt.ylabel('y')
plt.show()

 

1.4 样条插值

样条插值是一种分段插值方法。常见的样条插值包括线性样条和三次样条。三次样条插值具有良好的光滑性和逼近性能,是一种常用的插值方法。

三次样条插值代码示例:

import numpy as np
from scipy.interpolate import CubicSpline
import matplotlib.pyplot as plt

# 数据点
x = np.array([0, 1, 2, 3, 4, 5])
y = np.array([1, 3, 2, 5, 7, 8])

# 创建三次样条插值对象
cs = CubicSpline(x, y)

# 插值点
x_interp = np.linspace(0, 5, 100)
y_interp = cs(x_interp)

# 绘图
plt.plot(x, y, 'o', label='Data points')
plt.plot(x_interp, y_interp, '-', label='Cubic Spline Interpolation')
plt.legend()
plt.xlabel('x')
plt.ylabel('y')
plt.show()

2. 插值的Python实现

Python 提供了丰富的库来实现插值方法,主要包括 NumPy 和 SciPy 库。

2.1 使用 NumPy 进行插值

NumPy 提供了一些基本的插值函数,例如 numpy.interp 可以进行一维线性插值。

import numpy as np
import matplotlib.pyplot as plt

# 原始数据点
x = np.linspace(0, 10, 10)
y = np.sin(x)

# 插值点
x_interp = np.linspace(0, 10, 100)
y_interp = np.interp(x_interp, x, y)

# 绘图
plt.plot(x, y, 'o', label='Original data')
plt.plot(x_interp, y_interp, '-', label='Interpolated data')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.show()

2.2 使用 SciPy 进行插值

SciPy 提供了更加全面的插值函数,例如 scipy.interpolate.interp1dscipy.interpolate.CubicSpline

2.2.1 一维插值
from scipy.interpolate import interp1d
import numpy as np
import matplotlib.pyplot as plt

# 原始数据点
x = np.linspace(0, 10, 10)
y = np.sin(x)

# 创建插值对象
linear_interp = interp1d(x, y, kind='linear')
cubic_interp = interp1d(x, y, kind='cubic')

# 插值点
x_interp = np.linspace(0, 10, 100)
y_linear = linear_interp(x_interp)
y_cubic = cubic_interp(x_interp)

# 绘图
plt.plot(x, y, 'o', label='Original data')
plt.plot(x_interp, y_linear, '-', label='Linear interpolation')
plt.plot(x_interp, y_cubic, '--', label='Cubic interpolation')
plt.legend()
plt.show()
2.2.2 二维插值
from scipy.interpolate import RectBivariateSpline
import numpy as np
import matplotlib.pyplot as plt

# 原始数据点
x = np.linspace(0, 10, 10)
y = np.linspace(0, 10, 10)
z = np.sin(x[:, None] + y[None, :])

# 创建插值对象
linear_interp = RectBivariateSpline(x, y, z, kx=1, ky=1)
cubic_interp = RectBivariateSpline(x, y, z, kx=3, ky=3)

# 插值点
x_interp = np.linspace(0, 10, 100)
y_interp = np.linspace(0, 10, 100)
z_linear = linear_interp(x_interp, y_interp)
z_cubic = cubic_interp(x_interp, y_interp)

# 绘图
plt.subplot(1, 2, 1)
plt.imshow(z_linear, extent=(0, 10, 0, 10), origin='lower', aspect='auto')
plt.title('Linear interpolation')

plt.subplot(1, 2, 2)
plt.imshow(z_cubic, extent=(0, 10, 0, 10), origin='lower', aspect='auto')
plt.title('Cubic interpolation')

plt.show()

 

3. 插值的应用场景

插值在许多实际问题中都有广泛的应用,例如:

3.1 数据平滑和填补

在处理实验数据时,可能会遇到一些缺失值或噪声数据。插值可以用于平滑数据和填补缺失值,使数据更加连贯。

import numpy as np
from scipy.interpolate import interp1d
import matplotlib.pyplot as plt

# 原始数据点,包含缺失值
x = np.array([0, 1, 2, 4, 5, 7, 8, 9])
y = np.array([3, 2, 7, 1, 8, 6, 2, 5])

# 创建插值对象
f_linear = interp1d(x, y, kind='linear')

# 插值点,包括原始数据点和缺失值
x_interp = np.arange(0, 10, 1)
y_interp = f_linear(x_interp)

# 绘图
plt.plot(x, y, 'o', label='Original data')
plt.plot(x_interp, y_interp, '-', label='Interpolated data')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.show()

3.2 图像处理

在图像处理领域,插值常用于图像的放大、缩小和旋转。例如,双线性插值和双三次插值是常用的图像插值方法。

import numpy as np
from scipy.ndimage import zoom
import matplotlib.pyplot as plt
from skimage import data

# 加载示例图像
image = data.camera()

# 使用双线性插值进行图像缩放
zoom_factor = 2
image_zoomed = zoom(image, zoom_factor, order=1)  # order=1 表示双线性插值

# 显示原始图像和缩放后的图像
plt.subplot(1, 2, 1)
plt.title('Original Image')
plt.imshow(image, cmap='gray')

plt.subplot(1, 2, 2)
plt.title('Zoomed Image')
plt.imshow(image_zoomed, cmap='gray')

plt.show()

3.3 数值模拟

在数值模拟中,插值用于构造离散点之间的连续函数。例如,在有限元方法中,插值用于构造形函数。

import numpy as np
from scipy.interpolate import CubicSpline
import matplotlib.pyplot as plt

# 离散点
x = np.linspace(0, 10, 10)
y = np.sin(x)

# 创建三次样条插值对象
cs = CubicSpline(x, y)

# 插值点
x_interp = np.linspace(0, 10, 100)
y_interp = cs(x_interp)

# 绘图
plt.plot(x, y, 'o', label='Discrete points')
plt.plot(x_interp, y_interp, '-', label='Cubic Spline Interpolation')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.show()

4. 实例分析

为了更好地理解插值方法,我们来看一个具体的实例分析。

实例1:空气质量数据的校准

在2019年的全国大学生数学建模竞赛中,赛题涉及到空气质量数据的校准问题,需要使用插值算法来处理不完整的数据。

import numpy as np
from scipy.interpolate import interp1d
import matplotlib.pyplot as plt

# 原始数据点
days = np.array([1, 2, 4, 7, 8, 10])
aqi = np.array([50, 55, 70, 65, 60, 75])

# 创建插值对象
interp = interp1d(days, aqi, kind='cubic')

# 插值点
days_interp = np.linspace(1, 10, 100)
aqi_interp = interp(days_interp)

# 绘图
plt.plot(days, aqi, 'o', label='Original data')
plt.plot(days_interp, aqi_interp, '-', label='Interpolated data')
plt.xlabel('Days')
plt.ylabel('AQI')
plt.legend()
plt.show()

实例2:波浪能最大输出功率设计

在2022年的全国大学生数学建模竞赛中,赛题涉及到波浪能最大输出功率的设计问题,需要使用插值算法来优化设计参数。

import numpy as np
from scipy.interpolate import interp1d
import matplotlib.pyplot as plt

# 原始数据点
wave_heights = np.array([0.5, 1.0, 1.5, 2.0, 2.5, 3.0])
power_output = np.array([10, 20, 30, 40, 50, 60])

# 创建插值对象
interp = interp1d(wave_heights, power_output, kind='cubic')

# 插值点
wave_heights_interp = np.linspace(0.5, 3.0, 100)
power_output_interp = interp(wave_heights_interp)

# 绘图
plt.plot(wave_heights, power_output, 'o', label='Original data')
plt.plot(wave_heights_interp, power_output_interp, '-', label='Interpolated data')
plt.xlabel('Wave Heights (m)')
plt.ylabel('Power Output (kW)')
plt.legend()
plt.show()

第二部分:拟合的基本原理及应用

1. 拟合的基本原理

拟合是一种通过选择适当的函数形式,使该函数尽可能逼近已知数据点的方法。拟合的目的是通过已有的数据点,预测或估计未知数据点的值。拟合方法包括线性拟合、多项式拟合、指数拟合、对数拟合等。

1.1 线性拟合

线性拟合假设数据点之间的关系是线性的,通过最小二乘法求解线性方程组,得到拟合直线。线性拟合的目标函数为:

from scipy.optimize import curve_fit
import numpy as np
import matplotlib.pyplot as plt

# 线性拟合函数
def linear_func(x, a, b):
    return a * x + b

# 数据点
xdata = np.linspace(0, 10, 10)
ydata = 2.5 * xdata + 1.0 + np.random.normal(size=len(xdata))

# 拟合
popt, pcov = curve_fit(linear_func, xdata, ydata)
yfit = linear_func(xdata, *popt)

# 绘图
plt.plot(xdata, ydata, 'o', label='Data')
plt.plot(xdata, yfit, '-', label='Linear Fit')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.show()

1.2 多项式拟合

多项式拟合使用多项式函数来拟合数据点。多项式的阶数越高,拟合效果越好,但也容易出现过拟合现象。多项式拟合的目标函数为:

import numpy as np
import matplotlib.pyplot as plt

# 数据点
xdata = np.linspace(0, 10, 10)
ydata = 2.5 * xdata**2 + 1.0 + np.random.normal(size=len(xdata))

# 多项式拟合
p = np.polyfit(xdata, ydata, 2)
yfit = np.polyval(p, xdata)

# 绘图
plt.plot(xdata, ydata, 'o', label='Data')
plt.plot(xdata, yfit, '-', label='Polynomial Fit')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.show()

 

1.3 指数拟合

指数拟合假设数据点之间的关系是指数函数,通过对数变换和线性拟合相结合的方法进行求解。指数拟合的目标函数为:

from scipy.optimize import curve_fit
import numpy as np
import matplotlib.pyplot as plt

# 指数拟合函数
def exponential_func(x, a, b):
    return a * np.exp(b * x)

# 数据点
xdata = np.linspace(0, 4, 10)
ydata = 2.5 * np.exp(1.3 * xdata) + np.random.normal(size=len(xdata))

# 拟合
popt, pcov = curve_fit(exponential_func, xdata, ydata)
yfit = exponential_func(xdata, *popt)

# 绘图
plt.plot(xdata, ydata, 'o', label='Data')
plt.plot(xdata, yfit, '-', label='Exponential Fit')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.show()

1.4 对数拟合

对数拟合假设数据点之间的关系是对数函数,通过非线性最小二乘法进行求解。对数拟合的目标函数为:

from scipy.optimize import curve_fit
import numpy as np
import matplotlib.pyplot as plt

# 对数拟合函数
def logarithmic_func(x, a, b):
    return a * np.log(x) + b

# 数据点
xdata = np.linspace(1, 10, 10)
ydata = 2.5 * np.log(xdata) + 1.0 + np.random.normal(size=len(xdata))

# 拟合
popt, pcov = curve_fit(logarithmic_func, xdata, ydata)
yfit = logarithmic_func(xdata, *popt)

# 绘图
plt.plot(xdata, ydata, 'o', label='Data')
plt.plot(xdata, yfit, '-', label='Logarithmic Fit')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.show()

1.5 幂函数拟合

幂函数拟合假设数据点之间的关系是幂函数,通过对数变换和线性拟合相结合的方法进行求解。幂函数拟合的目标函数为:

from scipy.optimize import curve_fit
import numpy as np
import matplotlib.pyplot as plt

# 幂函数拟合函数
def power_func(x, a, b):
    return a * x**b

# 数据点
xdata = np.linspace(1, 10, 10)
ydata = 2.5 * xdata**1.5 + np.random.normal(size=len(xdata))

# 拟合
popt, pcov = curve_fit(power_func, xdata, ydata)
yfit = power_func(xdata, *popt)

# 绘图
plt.plot(xdata, ydata, 'o', label='Data')
plt.plot(xdata, yfit, '-', label='Power Fit')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.show()

2. 拟合的Python实现

Python 提供了丰富的库来处理拟合问题,常用的库包括 SciPy 和 NumPy。

2.1 使用 SciPy 进行拟合

SciPy 提供了多种拟合函数,例如 scipy.optimize.curve_fit 可以进行非线性拟合。

2.1.1 线性拟合
from scipy.optimize import curve_fit
import numpy as np
import matplotlib.pyplot as plt

# 线性拟合函数
def linear_func(x, a, b):
    return a * x + b

# 数据点
xdata = np.linspace(0, 10, 50)
ydata = 2.5 * xdata + 1.0 + 0.5 * np.random.normal(size=len(xdata))

# 拟合
popt, pcov = curve_fit(linear_func, xdata, ydata)
yfit = linear_func(xdata, *popt)

# 绘图
plt.plot(xdata, ydata, 'b-', label='Data')
plt.plot(xdata, yfit, 'r-', label='Fit: a=%.3f, b=%.3f' % tuple(popt))
plt.legend()
plt.show()

2.1.2 多项式拟合
import numpy as np
import matplotlib.pyplot as plt

# 数据点
xdata = np.linspace(0, 10, 50)
ydata = 2.5 * xdata**2 + 1.0 + 0.5 * np.random.normal(size=len(xdata))

# 拟合
p = np.polyfit(xdata, ydata, 2)
yfit = np.polyval(p, xdata)

# 绘图
plt.plot(xdata, ydata, 'b-', label='Data')
plt.plot(xdata, yfit, 'r-', label='Polynomial fit')
plt.legend()
plt.show()

2.1.3 指数拟合

from scipy.optimize import curve_fit
import numpy as np
import matplotlib.pyplot as plt

# 指数拟合函数
def exponential_func(x, a, b):
    return a * np.exp(b * x)

# 数据点
xdata = np.linspace(0, 4, 50)
ydata = 2.5 * np.exp(1.3 * xdata) + 0.5 * np.random.normal(size=len(xdata))

# 拟合
popt, pcov = curve_fit(exponential_func, xdata, ydata)
yfit = exponential_func(xdata, *popt)

# 绘图
plt.plot(xdata, ydata, 'b-', label='Data')
plt.plot(xdata, yfit, 'r-', label='Fit: a=%.3f, b=%.3f' % tuple(popt))
plt.legend()
plt.show()

2.1.4 对数拟合
from scipy.optimize import curve_fit
import numpy as np
import matplotlib.pyplot as plt

# 对数拟合函数
def logarithmic_func(x, a, b):
    return a * np.log(x) + b

# 数据点
xdata = np.linspace(1, 10, 50)
ydata = 2.5 * np.log(xdata) + 1.0 + 0.5 * np.random.normal(size=len(xdata))

# 拟合
popt, pcov = curve_fit(logarithmic_func, xdata, ydata)
yfit = logarithmic_func(xdata, *popt)

# 绘图
plt.plot(xdata, ydata, 'b-', label='Data')
plt.plot(xdata, yfit, 'r-', label='Fit: a=%.3f, b=%.3f' % tuple(popt))
plt.legend()
plt.show()

2.1.5 幂函数拟合
from scipy.optimize import curve_fit
import numpy as np
import matplotlib.pyplot as plt

# 幂函数拟合函数
def power_func(x, a, b):
    return a * x**b

# 数据点
xdata = np.linspace(1, 10, 50)
ydata = 2.5 * xdata**1.5 + 0.5 * np.random.normal(size=len(xdata))

# 拟合
popt, pcov = curve_fit(power_func, xdata, ydata)
yfit = power_func(xdata, *popt)

# 绘图
plt.plot(xdata, ydata, 'b-', label='Data')
plt.plot(xdata, yfit, 'r-', label='Fit: a=%.3f, b=%.3f' % tuple(popt))
plt.legend()
plt.show()

3. 拟合的应用场景

拟合在许多实际问题中都有广泛的应用,例如:

3.1 数据预测

在时间序列分析中,拟合常用于预测未来的数据点。例如,线性回归模型可以用于预测股票价格、温度变化等。

from scipy.optimize import curve_fit
import numpy as np
import matplotlib.pyplot as plt

# 线性拟合函数
def linear_func(x, a, b):
    return a * x + b

# 数据点
xdata = np.linspace(0, 10, 10)
ydata = 2.5 * xdata + 1.0 + np.random.normal(size=len(xdata))

# 拟合
popt, pcov = curve_fit(linear_func, xdata, ydata)
yfit = linear_func(xdata, *popt)

# 预测未来的数据点
x_predict = np.linspace(10, 15, 5)
y_predict = linear_func(x_predict, *popt)

# 绘图
plt.plot(xdata, ydata, 'o', label='Data')
plt.plot(xdata, yfit, '-', label='Linear Fit')
plt.plot(x_predict, y_predict, 'x', label='Prediction')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.show()

3.2 数据建模

在机器学习中,拟合用于构建回归模型,以揭示数据之间的关系。常见的回归模型包括线性回归、逻辑回归和多项式回归。

import numpy as np
import matplotlib.pyplot as plt

# 数据点
xdata = np.linspace(0, 10, 10)
ydata = 2.5 * xdata**2 + 1.0 + np.random.normal(size=len(xdata))

# 多项式拟合
p = np.polyfit(xdata, ydata, 2)
yfit = np.polyval(p, xdata)

# 绘图
plt.plot(xdata, ydata, 'o', label='Data')
plt.plot(xdata, yfit, '-', label='Polynomial Fit')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.show()

3.3 物理实验数据分析

在物理实验中,拟合用于分析实验数据,提取物理参数。例如,通过拟合实验数据,可以确定材料的弹性模量、热导率等物理参数。

from scipy.optimize import curve_fit
import numpy as np
import matplotlib.pyplot as plt

# 指数拟合函数
def exponential_func(x, a, b):
    return a * np.exp(b * x)

# 实验数据点
xdata = np.linspace(0, 4, 10)
ydata = 2.5 * np.exp(1.3 * xdata) + np.random.normal(size=len(xdata))

# 拟合
popt, pcov = curve_fit(exponential_func, xdata, ydata)
yfit = exponential_func(xdata, *popt)

# 绘图
plt.plot(xdata, ydata, 'o', label='Data')
plt.plot(xdata, yfit, '-', label='Exponential Fit')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.show()

3.4 工程设计

在工程设计中,拟合用于优化设计参数。例如,在机械设计中,通过拟合实验数据,可以优化零件的尺寸和材料选择。

from scipy.optimize import curve_fit
import numpy as np
import matplotlib.pyplot as plt

# 幂函数拟合函数
def power_func(x, a, b):
    return a * x**b

# 实验数据点
xdata = np.linspace(1, 10, 10)
ydata = 2.5 * xdata**1.5 + np.random.normal(size=len(xdata))

# 拟合
popt, pcov = curve_fit(power_func, xdata, ydata)
yfit = power_func(xdata, *popt)

# 绘图
plt.plot(xdata, ydata, 'o', label='Data')
plt.plot(xdata, yfit, '-', label='Power Fit')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.show()

4. 实例分析

为了更好地理解拟合方法,我们来看几个具体的实例分析。

实例1:股票价格预测

通过拟合历史股票价格数据,可以预测未来的股票价格。

from scipy.optimize import curve_fit
import numpy as np
import matplotlib.pyplot as plt

# 线性拟合函数
def linear_func(x, a, b):
    return a * x + b

# 历史股票价格数据
days = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
prices = np.array([10, 11, 13, 14, 15, 18, 19, 21, 22, 24])

# 拟合
popt, pcov = curve_fit(linear_func, days, prices)
predicted_prices = linear_func(days, *popt)

# 绘图
plt.plot(days, prices, 'o', label='Historical data')
plt.plot(days, predicted_prices, '-', label='Predicted data')
plt.xlabel('Days')
plt.ylabel('Prices')
plt.legend()
plt.show()

实例2:温度变化分析

通过拟合温度数据,可以分析温度变化的趋势。

from scipy.optimize import curve_fit
import numpy as np
import matplotlib.pyplot as plt

# 指数拟合函数
def exponential_func(x, a, b):
    return a * np.exp(b * x)

# 温度数据
days = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
temperatures = np.array([15, 17, 20, 22, 24, 28, 30, 32, 35, 37])

# 拟合
popt, pcov = curve_fit(exponential_func, days, temperatures)
predicted_temperatures = exponential_func(days, *popt)

# 绘图
plt.plot(days, temperatures, 'o', label='Historical data')
plt.plot(days, predicted_temperatures, '-', label='Predicted data')
plt.xlabel('Days')
plt.ylabel('Temperatures')
plt.legend()
plt.show()

总结 

插值与拟合的基本原理、常用方法及其Python实现,涵盖了拉格朗日插值、牛顿插值、样条插值等插值方法,以及线性拟合、多项式拟合、指数拟合、对数拟合和幂函数拟合等拟合方法,并通过具体的代码实例展示了插值与拟合在数据平滑、图像处理、数值模拟、数据预测、数据建模、物理实验数据分析和工程设计中的实际应用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1957315.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何让网站实现https访问

要让网站实现HTTPS访问,主要需要完成以下几个步骤。这些步骤确保了网站与用户之间的数据传输安全,并提升了用户对网站的信任度。 1. 确定证书类型 首先,根据网站的需求和预算,选择合适的SSL证书类型。常见的SSL证书类型包括&…

黑马头条Day11- 实时计算热点文章、KafkaStream

一、今日内容 1. 定时计算与实时计算 2. 今日内容 KafkaStream 什么是流式计算KafkaStream概述KafkaStream入门案例SpringBoot集成KafkaStream 实时计算 用户行为发送消息KafkaStream聚合处理消息更新文章行为数量替换热点文章数据 二、实时流式计算 1. 概念 一般流式计…

Skim通过Apple Script为选中文本添加特定颜色的高亮

一、代码编写 Skim的Apple Script维基页面 使用Mac的Script Editor编写以下代码: tell application "Skim"activatetell document 1set theSel to (get selection)set theNote to make note with data theSel with properties {type:highlight note, co…

Swift学习入门,新手小白看过来

😄作者简介: 小曾同学.com,一个致力于测试开发的博主⛽️,主要职责:测试开发、CI/CD 如果文章知识点有错误的地方,还请大家指正,让我们一起学习,一起进步。 😊 座右铭:不…

零代码拖拽,轻松搞定GIS场景编辑

在三维GIS领域,编辑场景和处理影像数据通常是一个复杂且费时的过程,但现在有了山海鲸可视化,这一切都变得简单有趣。这款免费可视化工具为您提供了零代码拖拽式编辑的体验,让您无需编程知识就能轻松创建和优化GIS场景。通过直观的…

STM32——GPIO(点亮LEDLED闪烁)

一、什么是GPIO? GPIO(通用输入输出接口): 1.GPIO 功能概述 GPIO 是通用输入/输出(General Purpose I/O)的简称,既能当输入口使用,又能当输出口使用。端口,就是元器件…

记一次因为在html两个地方引入vue.js导致组件注入失败的问题

这个问题我遇到两次了,是在恼火,不对,三次了,我如果不做这个笔记,我确定我还会遇到第三次。 尾部这个去掉就行 因为头部有了 遇到这种bu g好恼火,解决了又怎么样呢?重蹈覆辙的滋味不好受

Python技能达到这个水平,高薪就业不是梦

一,高薪就业的必备基础 要达到高薪就业的水平,Python开发者通常需要具备以下几方面的技能和经验: 如需Python籽料直接戳: 2024年最新python教程全套,学完即可进大厂!(附全套视频 下载&#xf…

#IO进程 笔记一

标准IO 文件IO 文件属性获取 目录操作 库 进程: process 线程(thread)、同步、互斥、条件变量 进程间通信: 6种(一共7种) 无名管道(pipe)、有名管道(fifo)、信号(sginal)、信号灯集(semphore)、 共享内存(shared memory)、消息队列(message queue) 标准IO 1. 概念 标准IO&…

详细分析示波器导至U盘的数据(Excel表格)示波器具体名称分析

一般由示波器导入U盘的csv文件(即Excel表格数据)的图如下图所示: 下面小编就对上表格的各个数据表示进行逐一解释 1、Memory Length:4000 在示波器(Oscilloscope)中,“Memory Length”&#x…

【算法】代码随想录之字符串(更新中)

文章目录 前言 一、反转字符串(LeetCode--344) 二、反转字符串II(LeetCode--541) 三、反转字符串中的单词(LeetCode--151) 前言 跟随代码随想录,学习字符串相关的算法题目,记录…

20240730 每日AI必读资讯

🎬燃爆!奥运8分钟AI影片火了,巴赫主席:感谢中国黑科技 - 短片名为《永不失色的她》(To the Greatness of HER),由阿里巴巴和国际奥委会联合推出。 - 百年奥运史上伟大女性的影响故事在此被浓缩…

VBA技术资料MF183:将图片导入word并调整大小

我给VBA的定义:VBA是个人小型自动化处理的有效工具。利用好了,可以大大提高自己的工作效率,而且可以提高数据的准确度。“VBA语言専攻”提供的教程一共九套,分为初级、中级、高级三大部分,教程是对VBA的系统讲解&#…

人生最大的毛病,就是一个“ 傲 ”字

99天 傲慢之害,人要勤勉恭敬 51.27 先生说:人生最大的毛病,就是一个“ 傲 ”字。 当今人们的问题,主要就是“ 傲 ”。千罪百恶,都从傲而来。一个人要是傲,就会自高自大、自以为是,不肯屈于人下…

cf960(div2)

A. Submission Bait(博弈) 题意:爱丽丝和鲍勃在大小为n的数组a中进行游戏,他们轮流进行运算,爱丽丝先开始,不能运算的一方输,一开始mx0,每次操作,玩家可以选择一个牵引i…

pikachu靶场之目录遍历、敏感信息泄露

一、目录遍历 漏洞概述 在web功能设计中,很多时候我们会要将需要访问的文件定义成变量,从而让前端的功能便的更加灵活。 当用户发起一个前端的请求时,便会将请求的这个文件的值(比如文件名称)传递到后台,后台再执行其对应的文件。 在这个过…

汽车辐射大?技术来救它:整车辐射抗扰发射天线仿真建模及性能预测

摘要 针对车辆电磁辐射抗扰度测试条件要求高、预测难度大的问题,通过仿真软件建立电磁抗扰度测试发射天线(简称抗扰发射天线)模型及无车情况下的电磁抗扰试验场强环境,为整车电磁辐射抗扰性能的预测搭建了一个仿真平台。 验证试验…

第5章Excel数据分析之数据透视表遇见SQL

文章目录 第5章 数据透视表遇见SQL5-1如何在查询中使用SQL语句?5-2SQL查询语句(数据透视表的辅助列)5-3SQL常用运算符(案例:添加分析维度)5-4SQL筛选语句(数据透视表数据源的过滤)5-…

【单片机毕业设计选题24085】-基于STM32的心电采集系统设计

系统功能: 系统上电后,OLED显示“欢迎使用心电采集系统请稍后”两秒后进入正常页面显示。 第一行显示心率和血氧值。 第二行显示心率设定高值。 第三行显示心率设定低值。 第四行显示心率状态,"Rate OK", "Rate High", "R…

C++中的依赖注入

目录 1.概述 2.构造函数注入 3.setter方法注入 4.接口注入 5.依赖注入框架 6.依赖注入容器 7.依赖注入框架的工作原理 8.依赖注入的优势 9.总结 1.概述 依赖注入是一种设计模式,它允许我们在不直接创建对象的情况下为对象提供其依赖项;它通过将…