优化算法:2.粒子群算法(PSO)及Python实现

news2024/11/18 6:32:03

一、定义

        粒子群算法(Particle Swarm Optimization,PSO)是一种模拟鸟群觅食行为的优化算法。想象一群鸟在寻找食物,每只鸟都在尝试找到食物最多的位置。它们通过互相交流信息,逐渐向食物最多的地方聚集。PSO就是基于这种群体智能的原理。

二、过程

        1. 初始化粒子群

        首先,我们随机生成一群粒子,每个粒子代表一个潜在的解。这些粒子就像一群鸟,它们在问题的解空间中随机分布。每个粒子有自己的位置和速度,位置表示解的参数,速度表示解的变化趋势。

        设粒子群大小为  n,粒子的位置和速度用向量表示。假设搜索空间是 d 维的。

  • 位置初始化:每个粒子的初始位置 x_i可以随机生成在搜索空间的范围内:

    x_{i,j} = x_{\text{min},j} + \text{rand()} \times (x_{\text{max},j} - x_{\text{min},j})

    其中, x_{\text{min},j}x_{\text{max},j} 分别是第 j 维的最小值和最大值,rand() 是一个生成 [0, 1] 之间随机数的函数。

  • 速度初始化:每个粒子的初始速度 v_i也可以随机生成:

    v_{i,j} = v_{\text{min},j} + \text{rand()} \times (v_{\text{max},j} - v_{\text{min},j})

    其中, v_{\text{min},j}v_{\text{max},j}分别是第 j 维的最小速度和最大速度。

        2. 计算适应度

        每个粒子都有一个“适应度”,这就像是鸟找到的食物量。适应度越高,表示解越好。我们用一个函数来计算每个粒子的适应度,这个函数通常是我们要优化的问题的目标函数。

        计算每个粒子当前的位置 x_i  对应的适应度值 f(x_i) ,以衡量其解的好坏。这个适应度函数 f 就是我们要优化的目标函数,具体形式取决于实际问题。

        3. 更新个体和全局最佳位置

        每个粒子都记得自己找到的最好的位置(个体最佳位置 p_i ​),这叫做“个体最佳位置”。同时,所有粒子中找到的最好的位置叫做“全局最佳位置”(全局最佳位置 g)。在每次迭代中,我们检查每个粒子的当前位置是否比它之前找到的最好位置更好,如果是,就更新个体最佳位置。同时,我们也更新全局最佳位置。

        在优化问题中,我们通常有一个目标函数 f(x),其目的是要最小化或最大化这个函数。适应度函数 f(x) 是一个评估每个解好坏的函数。在最小化问题中,适应度函数值越小,表示这个解越好;而在最大化问题中,适应度函数值越大,表示这个解越好。

  • 个体最佳位置更新:对于每个粒子,如果当前适应度值更好,则更新个体最佳位置:

    如果 f(x_i) < f(p_i) ,则 p_i = x_i。其中, p_i ​ 是第 i 个粒子的个体最佳位置。

  • 全局最佳位置更新:检查所有粒子的个体最佳位置,找到适应度值最小(此处假设为最大化问题)的那个位置作为全局最佳位置:g = \arg \min_{p_i} f(p_i)。其中,g 是全局最佳位置。

        4. 更新速度和位置

        更新速度

        每个粒子的速度更新公式如下:

v_{i,j}(t+1) = w \cdot v_{i,j}(t) + c_1 \cdot \text{rand()} \cdot (p_{i,j} - x_{i,j}(t)) + c_2 \cdot \text{rand()} \cdot (g_j - x_{i,j}(t))

        其中:

  • v_{i,j}(t)是第 i 个粒子在第 j 维上的当前速度。
  • w 是惯性权重,控制粒子保持原有速度的程度。
  • c_1是认知系数,控制粒子向自身历史最佳位置移动的程度。
  • c_2是社会系数,控制粒子向全局最佳位置移动的程度。
  • \text{rand()} 是一个生成 [0, 1]之间随机数的函数。
  • p_{i,j}是第 i 个粒子在第 j 维上的个体最佳位置。
  • g_j 是全局最佳位置在第 j 维上的值。
  • x_{i,j}(t)是第 i 个粒子在第 j 维上的当前位置。

        更新位置:

        每个粒子的位置更新公式如下:

        x_{i,j}(t+1) = x_{i,j}(t) + v_{i,j}(t+1)

        其中:

  • x_{i,j}(t)是第 i 个粒子在第 j 维上的当前位置。
  • v_{i,j}(t+1) 是第 i 个粒子在第 j 维上的更新后的速度。

5. 重复迭代

        我们重复上述步骤,直到满足某个停止条件,比如达到最大迭代次数,或者粒子的适应度变化很小。

三、Python示例

  1. 目标函数:定义了一个简单的目标函数f(x, y) = x^2 + y^2
  2. 参数设置:设置了PSO算法的参数,包括粒子数量、迭代次数、惯性权重和认知/社会系数。
  3. 初始化:初始化了粒子的位置和速度,同时记录每个粒子的个体最佳位置和全局最佳位置。
  4. 迭代优化:在每次迭代中,更新粒子的速度和位置,更新个体最佳位置和全局最佳位置,记录全局最佳位置的历史。
  5. 理论结果:定义的目标函数f(x, y) = x^2 + y^2 中,全局最优解显然是 (x, y) = (0, 0),因为这是函数的最小值点,其值为0。全局最佳位置的移动轨迹应该表现为逐步接近原点 (0, 0)的过程。

        完整代码如下:

import numpy as np
import matplotlib.pyplot as plt


# 定义目标函数(f(x) = x^2 + y^2)
def objective_function(position):
    return position[0] ** 2 + position[1] ** 2


# 参数
num_particles = 30  # 粒子数量,即搜索空间中的粒子数
num_iterations = 100  # 迭代次数,即算法运行的总次数
w = 0.7  # 惯性权重,控制粒子速度的惯性
c1 = 1.5  # 认知系数
c2 = 1.5  # 社会系数

# 初始化粒子位置和速度
particles_position = np.random.uniform(-10, 10, (num_particles, 2))  # 随机初始化粒子的位置,范围在 [-10, 10] 之间
particles_velocity = np.random.uniform(-1, 1, (num_particles, 2))  # 随机初始化粒子的速度,范围在 [-1, 1] 之间
personal_best_position = particles_position.copy()
personal_best_value = np.array([objective_function(p) for p in particles_position])
global_best_position = personal_best_position[np.argmin(personal_best_value)]
global_best_value = np.min(personal_best_value)

# 记录优化过程中的全局最佳位置
global_best_positions_history = []

for iteration in range(num_iterations):
    for i in range(num_particles):
        # 更新速度
        r1, r2 = np.random.rand(2)
        particles_velocity[i] = (w * particles_velocity[i] +
                                 c1 * r1 * (personal_best_position[i] - particles_position[i]) +
                                 c2 * r2 * (global_best_position - particles_position[i]))

        # 更新位置
        particles_position[i] += particles_velocity[i]

        # 更新个体最佳位置
        current_value = objective_function(particles_position[i])
        if current_value < personal_best_value[i]:
            personal_best_value[i] = current_value
            personal_best_position[i] = particles_position[i]

    # 更新全局最佳位置
    current_best_value = np.min(personal_best_value)
    if current_best_value < global_best_value:
        global_best_value = current_best_value
        global_best_position = personal_best_position[np.argmin(personal_best_value)]

    # 记录全局最佳位置
    global_best_positions_history.append(global_best_position.copy())

# 绘制结果
global_best_positions_history = np.array(global_best_positions_history)
plt.figure(figsize=(10, 6))
plt.plot(global_best_positions_history[:, 0], global_best_positions_history[:, 1], 'bo-', label='Global Best Position',
         zorder=1)
plt.scatter(global_best_positions_history[-1, 0], global_best_positions_history[-1, 1], color='red', s=50,
            label='Final Global Best', zorder=2)
plt.text(global_best_positions_history[-1, 0], global_best_positions_history[-1, 1],
         f'({global_best_positions_history[-1, 0]:.2f}, {global_best_positions_history[-1, 1]:.2f})',
         color='red', fontsize=12, zorder=3)
plt.title('PSO Optimization Process')
plt.xlabel('X Position')
plt.ylabel('Y Position')
plt.legend()
plt.grid()
plt.show()

        结果如下:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1955652.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

探索HTTPx:Python中的HTTP客户端新选择

文章目录 探索HTTPx&#xff1a;Python中的HTTP客户端新选择背景什么是HTTPx&#xff1f;安装HTTPx简单的库函数使用方法发送GET请求发送POST请求设置超时使用代理处理Cookies 应用场景异步请求连接池管理重试机制 常见问题与解决方案问题1&#xff1a;超时错误问题2&#xff1…

ROS getting started

文章目录 前言一、认识ROS提供的命令行工具nodestopicsservicesparametersactionsrqt_console, rqt_graph批量启动多个节点recorde and playc基础pub-sub 1.5 ROS2和fastdds1 改变订阅模式2 xml配置3 指定xml位置4 talker/listener通过发现服务器发送topic5 ros2 检视6 远程fas…

Natutre Methods|单细胞+空间转录,值得去复现的开源单细胞分析pipeline

肺癌是全球第二大最常见的癌症&#xff0c;也是癌症相关死亡的主要原因。肿瘤生态系统具有多种免疫细胞类型。尤其是髓系细胞&#xff0c;髓系细胞普遍存在&#xff0c;并且在促进疾病方面发挥着众所周知的作用。该篇通过单细胞和空间转录组学分析了 25 名未经治疗的腺癌和鳞状…

58页PPT智慧工地整体解决方案(精华版)

智慧工地的核心技术主要包括以下几个方面&#xff1a; 本文篇幅限制&#xff0c;只分享部分内容&#xff0c;喜欢文章请点赞转发评论&#xff0c;下载完整版PPT可以查看文章中图片右下角信息 1. 物联网&#xff08;IoT&#xff09;技术 核心作用&#xff1a;物联网技术是智慧…

贪心+背包

这道题比较坑的就是我们的对于相同截止时间的需要排个序&#xff0c;因为我们这个工作是有时间前后顺序的&#xff0c;我们如果不排序的话我们一些截止时间晚的工作就无法得到最优报酬 #include<bits/stdc.h> using namespace std;#define int long long int t; int n; c…

数据结构:二叉树(堆)的顺序存储

文章目录 1. 树1.1 树的概念和结构1.2 树的相关术语 2. 二叉树2.1 二叉树的概念和结构2.2 二叉树的特点2.3 特殊的二叉树2.3.1 满二叉树2.3.2 完全二叉树 2.4 二叉树的性质 3. 实现顺序结构二叉树3.1 堆的概念和结构3.2 初始化3.3 销毁3.4 插入数据3.5 向上调整算法3.6 删除数据…

Java语言程序设计——篇九(2)

&#x1f33f;&#x1f33f;&#x1f33f;跟随博主脚步&#xff0c;从这里开始→博主主页&#x1f33f;&#x1f33f;&#x1f33f; 枚举类型 枚举类型的定义枚举类型的方法实战演练 枚举在switch中的应用实战演练 枚举类的构造方法实战演练 枚举类型的定义 [修饰符] enum 枚举…

自动控制:带死区的PID控制算法

带死区的PID控制算法 在计算机控制系统中&#xff0c;为了避免控制动作过于频繁&#xff0c;消除因频繁动作所引起的振荡&#xff0c;可采用带死区的PID控制。带死区的PID控制通过引入一个死区&#xff0c;使得在误差较小的范围内不进行控制动作&#xff0c;从而减少控制系统的…

深入源码:解析SpotBugs(1)静态代码分析框架

文章目录 引言SpotBugs概述启动附录 引言 SpotBugs是一个开源的Java静态分析工具&#xff0c;旨在帮助开发人员检测Java代码中的潜在缺陷和漏洞。以下是对SpotBugs的详细解释&#xff1a; SpotBugs概述 定义与功能&#xff1a;SpotBugs是FindBugs的继任者。FindBugs是一个广受…

LInux的基础用法

Linux学习1&#xff1a;LInux的基本功能 读写的权限 读写的权限可以写为&#xff1a;r,w,x 九个权限可以分成三组&#xff1a; user&#xff1a;当前文件所属用户的权限 。 group&#xff1a;与当前文件所属用户同一组的用户权限 。 others&#xff1a;其他用户的权限。 使用…

免费【2024】springboot 编程语言在线学习平台的设计与实现

博主介绍&#xff1a;✌CSDN新星计划导师、Java领域优质创作者、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流✌ 技术范围&#xff1a;SpringBoot、Vue、SSM、HTML、Jsp、PHP、Nodejs、Python、爬虫、数据可视化…

昇思MindSpore 应用学习-RNN实现情感分类-CSDN

RNN实现情感分类 AI代码解析 概述 情感分类是自然语言处理中的经典任务&#xff0c;是典型的分类问题。本节使用MindSpore实现一个基于RNN网络的情感分类模型&#xff0c;实现如下的效果&#xff1a; 输入: This film is terrible 正确标签: Negative 预测标签: Negative输入…

深入分析 Android ContentProvider (七)

文章目录 深入分析 Android ContentProvider (七)ContentProvider 的高级使用和最佳实践1. 高级使用场景1.1. 跨应用数据共享示例&#xff1a;跨应用数据共享 1.2. 动态授权示例&#xff1a;动态授权 1.3. 数据观察与通知示例&#xff1a;内容观察者 2. 最佳实践2.1. 设计合理的…

Linux(虚拟机)的介绍

Linux介绍 常见的操作系统 Windows&#xff1a;微软公司开发的一款桌面操作系统&#xff08;闭源系统&#xff09;。版本有dos&#xff0c;win98&#xff0c;win NT&#xff0c;win XP , win7, win vista. win8, win10&#xff0c;win11。服务器操作系统&#xff1a;winserve…

大模型争锋:左手“世界最强” 右手“高性价比”

2020年&#xff0c;OpenAI团队发表论文&#xff0c;正式提出了大模型开发的经验法则Scaling Law&#xff0c;目前它并没有统一的中文名称&#xff0c;大致可以理解为“规模法则”&#xff0c;更通俗地说是“大力出奇迹”。2022年年底&#xff0c;ChatGPT的横空出世验证了“规模…

C++——类和对象(中)

目录 一、类的默认成员函数 二、构造函数 三、析构函数 四、拷贝构造函数 五、运算符重载 1.基本知识 2.赋值运算符重载 3.取地址运算符重载 a.const成员函数 b.取地址运算符重载 一、类的默认成员函数 默认成员函数就是用户没有显式实现&#xff0c;编译器会自动生成…

[ECharts] There is a chart instance already initialized on the dom. 已存在图表,渲染重复

报错&#xff1a;已存在图表&#xff0c;渲染重复 解决: 在合适的时机执行 dispose 方法即可 // echarts 全局存入 实例 let myChart: any;// 在你的 initChart 初始化 Echarts 方法中 先执行清理方法 const initChart () > {// 执行清理方法然后初始化if(myChart){cons…

Linux中进程之间的通信

IPC的概念 即进程间的通信 常用方式&#xff1a; 1&#xff0c;管道通信&#xff1a;有名管道&#xff0c;无名管道 2&#xff0c;信号- 系统开销小 3&#xff0c;消息队列-内核的链表 4&#xff0c;信号量-计数器 5&#xff0c;共享内存 6&#xff0c;内存映射 7&…

轻松合并PDF文档:2024年精选工具指南

不知道你有没有做PDF文件的经历&#xff0c;特别是多部门协同的那种。这时候如果有个可以支持pdf合并的工具那简直不要太开心了。独乐乐不如众乐乐&#xff0c;我把我用过的一些PDF合并工具这里介绍一下吧。 1.PDF编辑器福晰在线 直达链接&#xff1a;https://edit.foxitclou…

Java并发编程(下)

volatile的应用 - volatile修饰类属性&#xff08;类变量和实例变量&#xff09;&#xff0c;synchronized修饰类方法、代码块&#xff0c;同时volatile在并发中是**不安全**的 - 作用&#xff1a; - 使共享变量在多线程间可见&#xff0c;如果一个字段被声明成volatile&…