2.9.GoogLeNet

news2024/11/18 19:51:04

GoogLeNet

​ 主要解决了什么样大小的卷积核是最合适的:有时使用不同大小的卷积核组合是有利的

1.Inception块

在这里插入图片描述

​ Inception块由四条并行路径组成。 前三条路径使用窗口大小为1×1、3×3和5×5的卷积层,从不同空间大小中提取信息。

​ 中间的两条路径在输入上执行1×1卷积,以减少通道数,从而降低模型的复杂性。

​ 第四条路径使用3×3最大汇聚层,然后使用1×1卷积层来改变通道数。

​ 这四条路径都使用合适的填充来使输入与输出的高和宽一致,最后我们将每条线路的输出在通道维度上连结,并构成Inception块的输出。在Inception块中,通常调整的超参数是每层输出通道数。

在这里插入图片描述

​ 和3*3和5*5卷积层相比,Inception块的参数更少,运算更快

2.GoogLeNet架构

在这里插入图片描述

​ 做完平均池化后,再连接到全连接层输出类别数,这样可以更灵活,不用特别设计Inception块输出通道数为类别数,更灵活。

2.1 段1&2

在这里插入图片描述

​ 更多的高宽(信息更多)

2.2段3

在这里插入图片描述

​ 没太多规律,只能说提取信息后输出通道增加吧。

2.3段4 & 5

在这里插入图片描述

3.变种

  1. Inception-BN(v2) 使用batch normalization
  2. Inception-V3 修改了Inception块
    • 替换5×5 为多个3×3卷积层
    • 替换5×5 为1×7和7×1卷积层
    • 替换3×3 为1×3 和3×1卷积层
    • 更深
  3. Inception-V4-使用残差连接

3.1 Inception-V3

段3

在这里插入图片描述

​ 将5*5改为两个3*3

段4

在这里插入图片描述

段5

在这里插入图片描述

​ Inception块用4条不同超参数的卷积层和池化层的路来抽取信息,主要有点事模型参数小,计算复杂度低。

​ GoogLeNet使用了9个Inception块,是第一个达到上百层的网络(不是纯深度,算上了并行的层数)

​ 缺点是特别复杂,很多超参数。

4.代码实现

​ 这个通道数的计算,额,可以看一下课本上的计算过程:7.4. 含并行连结的网络(GoogLeNet) — 动手学深度学习 2.0.0 documentation (d2l.ai)

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l


class Inception(nn.Module):
    # c1--c4是每条路径的输出通道数
    def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):
        super(Inception, self).__init__(**kwargs)
        # 线路1,单1x1卷积层
        self.p1_1 = nn.Conv2d(in_channels, c1, kernel_size=1)
        # 线路2,1x1卷积层后接3x3卷积层
        self.p2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1)
        self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)
        # 线路3,1x1卷积层后接5x5卷积层
        self.p3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1)
        self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)
        # 线路4,3x3最大汇聚层后接1x1卷积层
        self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
        self.p4_2 = nn.Conv2d(in_channels, c4, kernel_size=1)

    def forward(self, x):
        p1 = F.relu(self.p1_1(x))
        p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
        p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
        p4 = F.relu(self.p4_2(self.p4_1(x)))
        # 在通道维度上连结输出,合并
        return torch.cat((p1, p2, p3, p4), dim=1)

b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                   nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),
                   nn.ReLU(),
                   nn.Conv2d(64, 192, kernel_size=3, padding=1),
                   nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),
                   Inception(256, 128, (128, 192), (32, 96), 64),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
                   Inception(512, 160, (112, 224), (24, 64), 64),
                   Inception(512, 128, (128, 256), (24, 64), 64),
                   Inception(512, 112, (144, 288), (32, 64), 64),
                   Inception(528, 256, (160, 320), (32, 128), 128),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
                   Inception(832, 384, (192, 384), (48, 128), 128),
                   nn.AdaptiveAvgPool2d((1,1)),
                   nn.Flatten())

net = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10))

X = torch.rand(size=(1, 1, 96, 96))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape:\t', X.shape)

lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1955462.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

任务管理无忧:2024年最佳7款待办事项管理软件

本文将分享2024年值得关注的7大优质待办事项管理软件:PingCode、Worktile、滴答清单、时光序、好用便签、Todoist、ClickUp。 在寻找完美的待办事项管理工具时,你是否感觉到选择众多却难以决断?无论是保持日程有序,还是优化团队协…

Linux基本用法(上)

1.计算机主要由 硬件和软件 组成 2.操作系统是什么 ? 有什么作用? 操作系统是软件的一类 主要作用是协助用户调度硬件工作,充当用户和计算机之间的桥梁 3.常见的操作系统有哪些? PC端: Windows,Linux,MacOS 移动端: Android&#xff…

UART 通信协议

文章目录 一 简介二 电平标准三 引脚定义四 数据格式五 波特率 一 简介 ​ UART (Universal Asynchronous Receiver/Transmitter),通用异步收发器,是一种串行、异步、全双工通信协议。 串行:利用一条传输线,将数据一位一位地传送…

YOLOv8改进 | 主干网络 | ⭐重写星辰Rewrite the Stars⭐【CVPR2024】

秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转 💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡 专栏目录 :《YOLOv8改进有效…

vulntarget-a

实际部署之后的win7 ip: 192.168.127.128 具体攻击过程如下 win7 扫描服务 使用fscan扫描win 7中的服务以及漏洞 ./fscan -h 192.168.127.128 扫出来一个ms17-010以及通达oa的漏洞,既然有永恒之蓝的,直接上MSF就行了 msf6 > search ms17-010 msf6…

架子鼓鼓谱制谱什么软件好 Guitar Pro怎么编鼓谱

对那些想学架子鼓又缺乏预算的朋友来说,通过架子鼓谱子软件来模拟学习也是个不错的选择。不过,由于市面上类似的软件过多,许多人都挑花了眼!那么,架子鼓谱子软件哪个比较好用呢?下面小编就来推荐几款好用的…

HTML--JavaScript操作DOM对象

目录 本章目标 一.DOM对象概念 ​编辑 二.节点访问方法 常用方法: 层次关系访问节点 三.节点信息 四.节点的操作方法 操作节点的属性 创建节点 删除替换节点 五.节点操作样式 style属性 class-name属性 六.获取元素位置 总结 本章目标 了解DOM的分类和节…

【论文精读】 | 基于图表示的视频抑郁症识别的两阶段时间建模框架

文章目录 0、Description1、Introduction2、Related work2.1 Relationship between depression and facial behaviours2.2 Video-based automatic depression analysis2.3 Facial graph representation 3、The proposed two-stage approach3.1 Short-term depressive behaviour…

18746 逆序数

这个问题可以使用归并排序的思想来解决。在归并排序的过程中,我们可以统计逆序数的数量。当我们合并两个已经排序的数组时,如果左边的数组中的元素��于右边的数组中的元素,那么就存在逆序,逆序数的数量就是…

力扣SQL50 按分类统计薪水 条件统计

Problem: 1907. 按分类统计薪水 文章目录 思路Code 思路 &#x1f468;‍&#x1f3eb; 参考题解 Code SELECT Low Salary AS category,SUM(CASE WHEN income < 20000 THEN 1 ELSE 0 END) AS accounts_count FROM AccountsUNION SELECT Average Salary category,SUM(C…

DBus快速入门

DBus快速入门 参考链接&#xff1a; 中文博客&#xff1a; https://www.e-learn.cn/topic/1808992 https://blog.csdn.net/u011942101/article/details/123383195 https://blog.csdn.net/weixin_44498318/article/details/115803936 https://www.e-learn.cn/topic/1808992 htt…

Vue3 Pinia的创建与使用代替Vuex 全局数据共享 同步异步

介绍 提供跨组件和页面的共享状态能力&#xff0c;作为Vuex的替代品&#xff0c;专为Vue3设计的状态管理库。 Vuex&#xff1a;在Vuex中&#xff0c;更改状态必须通过Mutation或Action完成&#xff0c;手动触发更新。Pinia&#xff1a;Pinia的状态是响应式的&#xff0c;当状…

JAVA中的异常:异常的分类+异常的处理

文章目录 1. 异常的分类1.1 Error1.2 Exception1.2.1 运行时异常1.2.2 非运行时异常 2.异常的处理2.1 try catch用法2.2 throws和throw的区别 1. 异常的分类 Throwable类&#xff08;表示可抛&#xff09;是所有异常和错误的超类&#xff0c;两个直接子类为Error和Exception分…

C++11新特性——智能指针——参考bibi《 原子之音》的视频以及ChatGpt

智能指针 一、内存泄露1.1 内存泄露常见原因1.2 如何避免内存泄露 二、实例Demo2.1 文件结构2.2 Dog.h2.3 Dog.cpp2.3 mian.cpp 三、独占式智能指针:unique _ptr3.1 创建方式3.1.1 ⭐从原始(裸)指针转换&#xff1a;3.1.2 ⭐⭐使用 new 关键字直接创建&#xff1a;3.1.3 ⭐⭐⭐…

敏感信息泄露wp

1.右键查看网页源代码 2.前台JS绕过&#xff0c;ctrlU绕过JS查看源码 3.开发者工具&#xff0c;网络&#xff0c;查看协议 4.后台地址在robots,拼接目录/robots.txt 5.用dirsearch扫描&#xff0c;看到index.phps,phps中有源码&#xff0c;拼接目录&#xff0c;下载index.phps …

【Go - context 速览,场景与用法】

作用 context字面意思上下文&#xff0c;用于关联管理上下文&#xff0c;具体有如下几个作用 取消信号传递&#xff1a;可以用来传递取消信号&#xff0c;让一个正在执行的函数知道它应该提前终止。超时控制&#xff1a;可以设定一个超时时间&#xff0c;自动取消超过执行时间…

Oat++ 后端实现跨域

这里记录在官方的例子中&#xff0c;加入跨域。Oat Example-CRUD 在官方的例子中&#xff0c;加入跨域。 Oat Example-CRUD 修改AppComponent.hpp文件中的代码&#xff0c;如下&#xff1a; #include "AppComponent.hpp"#include "controller/UserController…

8、从0搭建企业门户网站——网站部署

目录 正文 1、域名解析 2、云服务器端口授权 3、Mysql数据库初始化 4、上传网站软件包 5、Tomcat配置 6、运行Tomcat 7、停止Tomcat 8、部署后发现验证码无法使用 完毕! 正文 当云服务器租用、域名购买和软件开发都完成后,我们就可以开始网站部署上线,ICP备案会长…

表达式的转换

题目&#xff1a; 表达式的转换 - 洛谷 P1175 - Virtual Judge 思路&#xff1a; 这道题可以拆成两问&#xff1a; 第一问&#xff0c;将中缀表达式转成后缀表达式放入一个数组 第二问&#xff0c;将后缀表达式的数组计算&#xff0c;并输出过程 第一问思路&#xff1a; …

Python高维度大型气象矩阵存储策略分享

零、前情提要 最近需要分析全球范围多变量的数值预报数据&#xff0c;将grb格式的数据下载下来经过一通处理后需要将预处理数据先保存一遍&#xff0c;方便后续操作&#xff0c;处理完发现此时的数据维度很多&#xff0c;数据量巨大&#xff0c;使用不同的保存策略的解析难度和…