C++第二十八弹---进一步理解模板:特化和分离编译

news2025/2/22 17:34:25

个人主页: 熬夜学编程的小林

💗系列专栏: 【C语言详解】 【数据结构详解】【C++详解】

目录

1. 非类型模板参数

2. 模板的特化

2.1 概念

2.2 函数模板特化

2.3 类模板特化

2.3.1 全特化

2.3.2 偏特化

2.3.3 类模板特化应用示例

3. 模板分离编译

3.1 什么是分离编译

3.2 模板的分离编译

3.3 解决方法

4. 模板总结


1. 非类型模板参数


模板参数类 类型形参非类型形参


类 类型形参即:出现在模板参数列表中,跟在class或者typename之类的参数类型名称
非类型形参,就是用一个常量作为类(函数)模板的一个参数,在类(函数)模板中可将该参数当成常量来使用。

由STL库中静态顺序表array举例,我们声明类大小时,需要固定元素个数,在C语言中我们通常使用宏来定义常量,如下:

#define N 10  

namespace lin
{
	template<class T>
	class array
	{
	public:
		T& operator[](size_t index) { return _array[index]; }
		const T& operator[](size_t index)const { return _array[index]; }
		size_t size()const { return _size; }
		bool empty()const { return 0 == _size; }
	private:
		T _array[N];
		size_t _size;
	};
}

上面的代码中有一个缺陷,如果我们想实例化元素个数为10和元素个数为100的静态顺序表,我们的办法就是实例化两个元素个数为100的静态顺序表,但是此时会浪费很大的空间。由于上述原因我们就可以引出非类型模板参数,代码实现如下: 

namespace lin
{
	// 只支持整型做非类型模板参数,浮点数,类对象,自定义类型不能
	// 类型模板参数    class 对象
	// 非类型模板参数   类型 常量
	template<class T , size_t N = 10>// 使用缺省参数
	class array
	{
	public:
		T& operator[](size_t index) { return _array[index]; }
		const T& operator[](size_t index)const { return _array[index]; }
		size_t size()const { return _size; }
		bool empty()const { return 0 == _size; }
	private:
		T _array[N];
		size_t _size;
	};
}

 使用上述的代码声明类时,可以根据自己的需求实例化不同大小的静态顺序表类。使用如下:

int main()
{
    // 实例化大小不同的类
	lin::array<int> a1; // 默认 N = 10
	lin::array<int, 1000> a2; // N = 1000
    
	return 0;
}

注意:

1. 浮点数、类对象以及字符串不允许作为非类型模板参数的。
2. 非类型的模板参数必须在编译期就能确认结果。

2. 模板的特化


2.1 概念

通常情况下,使用模板可以实现一些与类型无关的代码,但对于一些特殊类型的可能会得到一些错误的结果,需要特殊处理,比如:实现了一个专门用来进行小于比较的函数模板

日期类

class Date
{
public:
	friend ostream& operator<<(ostream& _cout, const Date& d);

	Date(int year = 1900, int month = 1, int day = 1)
		: _year(year)
		, _month(month)
		, _day(day)
	{}

	bool operator<(const Date& d)const
	{
		return (_year < d._year) ||
			(_year == d._year && _month < d._month) ||
			(_year == d._year && _month == d._month && _day < d._day);
	}

	bool operator>(const Date& d)const
	{
		return (_year > d._year) ||
			(_year == d._year && _month > d._month) ||
			(_year == d._year && _month == d._month && _day > d._day);
	}
private:
	int _year;
	int _month;
	int _day;
};

ostream& operator<<(ostream& _cout, const Date& d)
{
	_cout << d._year << "-" << d._month << "-" << d._day;
	return _cout;
}

代码演示 

// 函数模板 -- 参数匹配
template<class T>
bool Less(T left, T right)
{
	return left < right;
}
int main()
{
	cout << Less(1, 2) << endl;
	// 可以比较,结果正确
	Date d1(2022, 7, 7);
	Date d2(2022, 7, 8);
	cout << Less(d1, d2) << endl; // 可以比较,结果正确
	Date* p1 = &d1;
	Date* p2 = &d2;
	cout << Less(p1, p2) << endl; // 可以比较,结果错误
	return 0;
}

可以看到,Less绝对多数情况下都可以正常比较,但是在特殊场景下就得到错误的结果。上述示例中,p1指向的d1显然小于p2指向的d2对象,但是Less内部并没有比较p1和p2指向的对象内容,而比较的是p1和p2指针的地址,这就无法达到预期而错误。


此时,就需要对模板进行特化。即:在原模板类的基础上,针对特殊类型所进行特殊化的实现方式。模板特化中分为函数模板特化类模板特化


2.2 函数模板特化


函数模板的特化步骤:

1. 必须要先有一个基础的函数模板
2. 关键字template后面接一对空的尖括号<>
3. 函数名后跟一对尖括号,尖括号中指定需要特化的类型
4. 函数形参表: 必须要和模板函数的基础参数类型完全相同,如果不同编译器可能会报一些奇怪的错误。

// 函数模板 -- 参数匹配
template<class T>
bool Less(T left, T right)
{
	return left < right;
}

// 对Less函数模板进行特化
template<>
bool Less<Date*>(Date* left, Date* right)
{
	return *left < *right;
}
int main()
{
	cout << Less(1, 2) << endl;
	Date d1(2022, 7, 7);
	Date d2(2022, 7, 8);
	cout << Less(d1, d2) << endl;
	Date* p1 = &d1;
	Date* p2 = &d2;
	cout << Less(p1, p2) << endl; // 调用特化之后的版本,而不走模板生成了
	return 0;
}

注意:一般情况下如果函数模板遇到不能处理或者处理有误的类型,为了实现简单通常都是将该函数直接给出。

bool Less(Date* left, Date* right)
{
    return *left < *right;
}

该种实现简单明了,代码的可读性高,容易书写,因为对于一些参数类型复杂的函数模板,特化时特别给出,因此函数模板不建议特化。


2.3 类模板特化


2.3.1 全特化


全特化即是将模板参数列表中所有的参数都确定化

template<class T1, class T2>
class Data
{
public:
	Data() { cout << "Data<T1, T2>" << endl; }
private:
	T1 _d1;
	T2 _d2;
};
template<>
class Data<int, char>//两个模板参数均特别处理
{
public:
	Data() { cout << "Data<int, char>" << endl; }
};
void Test()
{
	Data<int, int> d1;//调用模板
	Data<int, char> d2;//调用全特化
}

2.3.2 偏特化


偏特化(半特化):任何针对模版参数进一步进行条件限制设计的特化版本。比如对于以下模板类:

template<class T1, class T2>
class Data
{
public:
	Data() { cout << "Data<T1, T2>" << endl; }
private:
	T1 _d1;
	T2 _d2;
};

偏特化有以下两种表现方式:


1.部分特化将模板参数类表中的一部分参数特化。

// 将第二个参数特化为int
template <class T1>
class Data<T1, int>
{
public:
	Data() { cout << "Data<T1, int>" << endl; }
};

2.参数更进一步的限制。


偏特化并不仅仅是指特化部分参数,而是针对模板参数更进一步的条件限制所设计出来的一个特化版本。

// 两个参数偏特化为指针类型
template<class T1,class T2>
class Data<T1*, T2*>
{
public:
	Data() { cout << "Data<T1*, T2*>" << endl; }
};

// 一个参数特化为指针类型,一个参数特化为引用类型
template<class T1,class T2>
class Data<T1&, T2*>
{
public:
	Data() { cout << "Data<T1&, T2*>" << endl; }
};

int main()
{
	Data<int*, int*> d4;// 调用特化的指针版本
	Data<int&, int*> d5;// 调用一个为指针,一个为引用类型
	return 0;
}

2.3.3 类模板特化应用示例


有如下专门用来按照小于比较的类模板Less:

#include<vector>
#include <algorithm>
template<class T>
struct Less
{
	bool operator()(const T& x, const T& y) const
	{
		return x < y;
	}
};

int main()
{
	Date d1(2022, 7, 7);
	Date d2(2022, 7, 6);
	Date d3(2022, 7, 8);
	vector<Date> v1;
	v1.push_back(d1);
	v1.push_back(d2);
	v1.push_back(d3);
	// 可以直接排序,结果是日期升序
	sort(v1.begin(), v1.end(), Less<Date>());

	vector<Date*> v2;
	v2.push_back(&d1);
	v2.push_back(&d2);
	v2.push_back(&d3);
	// 可以直接排序,结果错误日期还不是升序,而v2中放的地址是升序
	// 此处需要在排序过程中,让sort比较v2中存放地址指向的日期对象
	// 但是走Less模板,sort在排序时实际比较的是v2中指针的地址,因此无法达到预期
	sort(v2.begin(), v2.end(), Less<Date*>());
    vector<Date*>::iterator it = v2.begin();
    while (it != v2.end())
    {
	    cout << *(*it) << " ";//打印日期
    	++it;
    }

	return 0;
}

 

通过观察上述程序的结果发现,对于日期对象可以直接排序,并且结果是正确的。但是如果待排序元素是指针,结果就不一定正确。因为:sort最终按照Less模板中方式比较,所以只会比较指针,而不是比较指针指向空间中内容,此时可以使用类版本特化来处理上述问题:

// 对Less类模板按照指针方式特化
template<class T>
struct Less<T*>
{
	bool operator()(const T* x, const T* y) const
	{
		return *x < *y;
	}
};

特化之后,在运行上述代码,就可以得到正确的结果。
 

3. 模板分离编译


3.1 什么是分离编译


一个程序(项目)由若干个源文件共同实现,而每个源文件单独编译生成目标文件,最后将所有目标文件链接起来形成单一的可执行文件的过程称为分离编译模式。

3.2 模板的分离编译


假如有以下场景,模板的声明与定义分离开,在头文件中进行声明,源文件中完成定义:

Array.h

// 声明
namespace lin
{
	template<class T, size_t N = 10>
	class array
	{
	public:
		size_t size()const;
	private:
		T _array[N];
		size_t _size = 0;// 缺省值初始化
	};

	void func();
}

Array.cpp

// 定义
namespace lin
{
	template<class T,size_t N>
	size_t array<T, N>::size()const
	{
		return _size;
	}

	void func()
	{
		cout << "void func()" << endl;
	}
}

Test.cpp 

int main()
{
	lin::array<int> a1;// 构造函数

	cout << a1.size() << endl;
	lin::func();
}

 在上述代码中,当调用size函数时会报链接错误,而调用func函数则不会报错,为什么呢???

// size与func都只有声明,编译时,检查一下函数名和参数匹配,没问题则暂且通过
// 定义在.cpp文件,链接的时候再去其他文件中找函数地址

// 调用的地方,知道实例化T成什么类型,但是只有声明没有定义 

// 定义的地方,不知道实例化T成什么类型,所以有定义无法实例化,也就是无法生成函数的地址到符号表

3.3 解决方法


1. 将声明和定义放到一个文件 "xxx.hpp" 里面或者xxx.h其实也是可以的。推荐使用这种。

在.h文件中声明+定义
// .h预处理展开后,实例化模板时,既有声明,又有定义,直接就实例化
// 编译时,有函数的定义,直接就有地址,不需要链接去找

如下:

// 声明定义在同一个.h文件
namespace lin
{
	template<class T, size_t N = 10>
	class array
	{
	public:
		size_t size()const;
	private:
		T _array[N];
		size_t _size = 0;// 缺省值初始化
	};

	template<class T, size_t N>
	size_t array<T, N>::size()const
	{
		return _size;
	}
	void func();
}


2. 模板定义的位置显式实例化。这种方法不实用,不推荐使用。

namespace lin
{
	template<class T, size_t N = 10>
	class array
	{
	public:
		size_t size()const;
	private:
		T _array[N];
		size_t _size = 0;// 缺省值初始化
	};

	// 显示实例化
	template
		class array<int>;

	template
		class array<double>;
}

显示实例化的缺陷是一个类型就需要实例化一次,比较麻烦。

4. 模板总结


【优点】

1. 模板复用了代码,节省资源,更快的迭代开发,C++的标准模板库(STL)因此而产生。
2. 增强了代码的灵活性。


【缺陷】

1. 模板会导致代码膨胀问题,也会导致编译时间变长。
2. 出现模板编译错误时,错误信息非常凌乱,不易定位错误 。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1954578.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Redis常用指令(不定期更新)

Redis常用指令&#xff08;不定期更新&#xff09; 查询指定前缀key的数量查看键空间事件开启键空间通知 查询指定前缀key的数量 查询【TEST前缀】的key数量 EVAL "return #redis.call(keys,TEST:*)" 0返回信息 查看键空间事件 config get notify-keyspace-even…

Linux——DNS服务搭建

&#xff08;一&#xff09;搭建nginx 1.首先布置基本环境 要求能够ping通外网&#xff0c;有yum源 2.安装nginx yum -y install nginx 然后查看验证 3.修改网页配置文件 修改文件&#xff0c;任意编写内容&#xff0c;然后去物理机测试 &#xff08;二&#xff09;创建一…

51.TFT_LCD液晶屏驱动设计与验证(4)

&#xff08;1&#xff09;顶层文件&#xff1a; module tft_colorbar(input clk ,input reset_n ,output hsync ,output vsync ,output [23:0] rgb_tft ,output tft_bl ,output …

Python多进程环境同时操作时如何互斥操作

title: Python多进程环境同时操作时如何互斥操作 tags: [互斥, python] categories: [Python, 多进程] 在 Python 中&#xff0c;fcntl 模块提供了对文件控制操作的接口&#xff0c;包括文件锁定。fcntl.flock() 函数用于对文件进行锁定&#xff0c;以确保在多进程环境中对文件…

接口自动化测试框架实战-1-项目环境搭建

上一小节中我们讲解了一下本次接口自动化测试框架的大致架构设计和功能概览&#xff0c;本小节我们讲解一下整个项目开发环境的搭建方法。 1、python基础环境 安装python3版本&#xff1a;建议3.9.6版本及以上即可 新建项目的虚拟环境&#xff1a;virtualenv或者pycharm自带的…

MyBatis的入门操作--打印日志和增删改查(单表静态)

下面介绍注解和xml实现crud的操作 目录 一、日志打印和参数传递 1.1.使用mybatis打印日志 1.2.参数传递细节 二、crud&#xff08;注解实现&#xff09; 2.1.增(insert) 2.2.删(delete) 和 (update) 2.3.查(select) 三、crud&#xff08;xml实现&#xff09; 3.1.准备…

环境搭建-Windows系统搭建Docker

Windows系统搭建Docker 一、系统虚拟化1.1 启用虚拟化2.2 启用Hyper-v并开启虚拟任务 三、安装WSL3.1 检验安装3.2 安装WSL 四、Docker安装4.1 Docker安装包下载4.2 Docker安装4.3 运行docker Desktop 五、Docker配置5.1 打开Docker配置中心5.2 配置Docker国内镜像 六、使用 一…

WIN7系统安装,BIOS+MBR方式

&#x1f3c6;本文收录于《CSDN问答解惑-专业版》专栏&#xff0c;主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案&#xff0c;希望能够助你一臂之力&#xff0c;帮你早日登顶实现财富自由&#x1f680;&#xff1b;同时&#xff0c;欢迎大家关注&&收…

【数据结构初阶】单链表经典算法题十二道——得道飞升(中篇)

hi&#xff0c;bro—— 目录 5、 链表分割 6、 链表的回文结构 7、 相交链表 8、 环形链表 【思考】 —————————————— DEAD POOL —————————————— 5、 链表分割 /* struct ListNode {int val;struct ListNode *next;ListNode(int x) : val(x), …

C++编程: 使用 Nanomsg 进行 PUB-SUB 模式基准测试

文章目录 0. 引言1. Nanomsg简介1.1 可扩展性协议类型1.2 支持的传输机制1.3 NanoMsg 架构与实现 2. PUB-SUB 模式基准测试 0. 引言 Nanomsg 作为一款高性能的通信库&#xff0c;支持多种消息传递模式&#xff0c;其中包括 PUB-SUB&#xff08;发布-订阅&#xff09;。 本篇文…

【NPU 系列专栏 2.4 -- 高速互连 NVLink 详细介绍】

请阅读【嵌入式及芯片开发学必备专栏】 文章目录 NVLink 简介NVLink 主要特点NVLink 应用场景NVLink 工作原理NVLink 实例介绍DL 中使用 NVLinkHPC 中使用 NVLinkSummaryNVLink 简介 NVLink 是 NVIDIA 开发的一种高速互连技术,旨在提升 GPU 与 GPU 之间以及 GPU 与 CPU 之间的…

simapro碳捕集

&#x1f3c6;本文收录于《CSDN问答解惑-专业版》专栏&#xff0c;主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案&#xff0c;希望能够助你一臂之力&#xff0c;帮你早日登顶实现财富自由&#x1f680;&#xff1b;同时&#xff0c;欢迎大家关注&&收…

SpringBoot整合阿里云短信业务

详细介绍SpringBoot整合阿里云短信服务的每一步过程&#xff0c;同时会将验证码存放到Redis中并设置过期时间&#xff0c;尽量保证实战的同时也让没做过的好兄弟也能实现发短信的功能~ 1. 注册阿里云账号和创建Access Key 首先&#xff0c;你需要注册一个阿里云账号&#xff0…

【轨物方案】电表红外抄表物联网装置

对于光伏运维工程师来说&#xff0c;电表抄表是一件并不陌生的工作&#xff0c;不过很多并网电表的RS485通讯接口一般都被占用了&#xff0c;并且电表的外壳也被铅封起来。在这种情况下电站通常采用人工抄表的方式采集电量数据&#xff0c;这种方式费时费力&#xff0c;对电站运…

【研发日记】Matlab/Simulink技能解锁(十)——PID调参技巧

文章目录 前言 项目背景 参数P调节 参数I调节 参数D调节 整体优化 分析和应用 总结 参考资料 前言 见《【研发日记】Matlab/Simulink技能解锁(五)——七个Simulink布线技巧》 见《【研发日记】Matlab/Simulink技能解锁(六)——六种Simulink模型架构》 见《【研发日记】…

WEB前端11-Vue2基础01(项目构建/目录解析/基础案例)

Vue2基础(01) 1.Vue2项目构建 步骤一&#xff1a;安装前端脚手架 npm install -g vue/cli步骤二&#xff1a;创建项目 vue ui步骤三&#xff1a;运行项目 npm run serve步骤四&#xff1a;修改vue相关的属性 DevServer | webpack //修改端口和添加代理 const { defineCo…

7·19微软蓝屏事件:对全球 IT 基础设施的冲击与反思

719微软蓝屏事件&#xff1a;对全球 IT 基础设施的冲击与反思 一、引言二、事件的详细剖析三、网络安全与系统稳定性的挑战四、构建稳固和安全网络环境的建议五、各领域的有效实践六、总结与展望 719微软蓝屏事件是指当地时间2024年7月19日美国网络安全企业“群集打击”&#x…

Cocos Creator2D游戏开发-(1)初始化设置

初心: 做一款微信或者抖音小游戏,然后发布,对于我来说这是一个新的赛道; 写这些文档的原因,记录一下自己学习过程,下次用的时候方便找 cocos creator版本: 3.8.3 当前小游戏飞机大战教程来源于: 抖音: 禅影 chanying001 源码目录: https://www.kdocs.cn/l/caLr6XCbEfPa 创建一个…

【iOS】KVO底层原理

KVO底层原理 KVO概述KVO常用方法注册监听器详细解释1. 系统不会增加观察者对象的引用计数2. 对象释放后观察者不会自动置空3. 需要自己持有观察者对象的强引用 示例代码Person 类Observer 类main 函数 解释删除监听器监听器对象的监听回掉方法 KVO内部实现_NSSetLongLongValueA…