不管是裸机实验还是 Linux 下的驱动实验,中断都是频繁使用的功能,在裸机中使用中断我们需要做一大堆的工作,比如配置寄存器,使能 IRQ 等等。Linux 内核提供了完善的中断框架,我们只需要申请中断,然后注册中断处理函数即可,使用非常方便,不需要一系列复杂的寄存器配置。本章我们就来学习一下如何在 Linux 下使用中断。
中断号
每个中断都有一个中断号,通过中断号即可区分不同的中断,有的资料也把中断号叫做中断线。在 Linux 内核中使用一个 int 变量表示中断号。
Linux 中断 API 函数
先来回顾一下裸机实验里面中断的处理方法:
①、使能中断,初始化相应的寄存器。
②、注册中断服务函数,也就是向 irqTable 数组的指定标号处写入中断服务函数
②、中断发生以后进入 IRQ 中断服务函数,在 IRQ 中断服务函数在数组 irqTable 里面查找具体的中断处理函数,找到以后执行相应的中断处理函数。
在 Linux 内核中也提供了大量的中断相关的 API 函数,我们来看一下这些跟中断有关的API 函数:
request_irq 函数
在 Linux 内核中要想使用某个中断是需要申请的,request_irq 函数用于申请中断,request_irq函数可能会导致睡眠,因此不能在中断上下文或者其他禁止睡眠的代码段中使用 request_irq 函数。request_irq 函数会激活(使能)中断,所以不需要我们手动去使能中断,request_irq 函数原型如下:
int request_irq(unsigned int
irq,
irq_handler_t
handler,
unsigned long
flags,
const char
*name,
void
*dev)
函数参数和返回值含义如下:
irq:要申请中断的中断号。
handler:中断处理函数,当中断发生以后就会执行此中断处理函数。
flags:中断标志,可以在文件 include/linux/interrupt.h 里面查看所有的中断标志,这里我们介绍几个常用的中断标志,如表 51.1.1.1 所示:
比如 I.MX6U-ALPHA 开发板上的 KEY0 使用 GPIO1_IO18,按下 KEY0 以后为低电平,因此可以设置为下降沿触发,也就是将 flags 设置为 IRQF_TRIGGER_FALLING。表 51.1.1.1 中的这些标志可以通过“|”来实现多种组合。
name:中断名字,设置以后可以在/proc/interrupts 文件中看到对应的中断名字。
dev:如果将 flags 设置为 IRQF_SHARED 的话,dev 用来区分不同的中断,一般情况下将dev 设置为设备结构体,dev 会传递给中断处理函数 irq_handler_t 的第二个参数。
返回值:0 中断申请成功,其他负值 中断申请失败,如果返回-EBUSY 的话表示中断已经被申请了。
free_irq 函数
使用中断的时候需要通过 request_irq 函数申请,使用完成以后就要通过 free_irq 函数释放掉相应的中断。如果中断不是共享的,那么 free_irq 会删除中断处理函数并且禁止中断。free_irq函数原型如下所示:
void free_irq(unsigned int irq,
void
*dev)
函数参数和返回值含义如下:
irq:要释放的中断。
dev:如果中断设置为共享(IRQF_SHARED)的话,此参数用来区分具体的中断。共享中断只有在释放最后中断处理函数的时候才会被禁止掉。
返回值:无。
中断处理函数
使用 request_irq 函数申请中断的时候需要设置中断处理函数,中断处理函数格式如下所示:
irqreturn_t (*irq_handler_t) (int, void *)
第一个参数是要中断处理函数要相应的中断号。第二个参数是一个指向 void 的指针,也就是个通用指针,需要与 request_irq 函数的 dev 参数保持一致。用于区分共享中断的不同设备,dev 也可以指向设备数据结构。中断处理函数的返回值为 irqreturn_t 类型,irqreturn_t 类型定义如下所示:
可以看出 irqreturn_t 是个枚举类型,一共有三种返回值。一般中断服务函数返回值使用如下形式:
return IRQ_RETVAL(IRQ_HANDLED)
中断使能与禁止函数
常用的中断使用和禁止函数如下所示:
void enable_irq(unsigned int irq)
void disable_irq(unsigned int irq)
enable_irq 和 disable_irq 用于使能和禁止指定的中断,irq 就是要禁止的中断号。disable_irq函数要等到当前正在执行的中断处理函数执行完才返回,因此使用者需要保证不会产生新的中断,并且确保所有已经开始执行的中断处理程序已经全部退出。在这种情况下,可以使用另外一个中断禁止函数:
void disable_irq_nosync(unsigned int irq)
disable_irq_nosync 函数调用以后立即返回,不会等待当前中断处理程序执行完毕。上面三个函数都是使能或者禁止某一个中断,有时候我们需要关闭当前处理器的整个中断系统,也就是在学习 STM32 的时候常说的关闭全局中断,这个时候可以使用如下两个函数:
local_irq_enable()
local_irq_disable()
local_irq_enable 用于使能当前处理器中断系统,local_irq_disable 用于禁止当前处理器中断系统。假如 A 任务调用 local_irq_disable 关闭全局中断 10S,当关闭了 2S 的时候 B 任务开始运行,B 任务也调用 local_irq_disable 关闭全局中断 3S,3 秒以后 B 任务调用 local_irq_enable 函数将全局中断打开了。此时才过去 2+3=5 秒的时间,然后全局中断就被打开了,此时 A 任务要关闭 10S 全局中断的愿望就破灭了,然后 A 任务就“生气了”,结果很严重,可能系统都要被A 任务整崩溃。为了解决这个问题,B 任务不能直接简单粗暴的通过 local_irq_enable 函数来打开全局中断,而是将中断状态恢复到以前的状态,要考虑到别的任务的感受,此时就要用到下面两个函数:
local_irq_save(flags)
local_irq_restore(flags)
这两个函数是一对,local_irq_save 函数用于禁止中断,并且将中断状态保存在 flags 中。local_irq_restore 用于恢复中断,将中断恢复到 flags 状态。
上半部与下半部
在有些资料中也将上半部和下半部称为顶半部和底半部,都是一个意思。我们在使用request_irq 申请中断的时候注册的中断服务函数属于中断处理的上半部,只要中断触发,那么中断处理函数就会执行。我们都知道中断处理函数一定要快点执行完毕,越短越好,但是现实往往是残酷的,有些中断处理过程就是比较费时间,我们必须要对其进行处理,缩小中断处理函数的执行时间。比如电容触摸屏通过中断通知 SOC 有触摸事件发生,SOC 响应中断,然后通过 IIC 接口读取触摸坐标值并将其上报给系统。但是我们都知道 IIC 的速度最高也只有400Kbit/S,所以在中断中通过 IIC 读取数据就会浪费时间。我们可以将通过 IIC 读取触摸数据的操作暂后执行,中断处理函数仅仅相应中断,然后清除中断标志位即可。这个时候中断处理过程就分为了两部分:
上半部:上半部就是中断处理函数,那些处理过程比较快,不会占用很长时间的处理就可以放在上半部完成。
下半部:如果中断处理过程比较耗时,那么就将这些比较耗时的代码提出来,交给下半部去执行,这样中断处理函数就会快进快出。
因此,Linux 内核将中断分为上半部和下半部的主要目的就是实现中断处理函数的快进快出,那些对时间敏感、执行速度快的操作可以放到中断处理函数中,也就是上半部。剩下的所有工作都可以放到下半部去执行,比如在上半部将数据拷贝到内存中,关于数据的具体处理就可以放到下半部去执行。至于哪些代码属于上半部,哪些代码属于下半部并没有明确的规定,一切根据实际使用情况去判断,这个就很考验驱动编写人员的功底了。这里有一些可以借鉴的参考点:
①、如果要处理的内容不希望被其他中断打断,那么可以放到上半部。
②、如果要处理的任务对时间敏感,可以放到上半部。
③、如果要处理的任务与硬件有关,可以放到上半部
④、除了上述三点以外的其他任务,优先考虑放到下半部。
上半部处理很简单,直接编写中断处理函数就行了,关键是下半部该怎么做呢?Linux 内核提供了多种下半部机制,接下来我们来学习一下这些下半部机制。
更多待补充。。。。。。
注意!!!
!!!我们知道,中断是由硬件产生的,在Linux开发中,一般是由驱动层来设计中断的回调函数的,至于应用层,并不会直接处理中断,应用层通常是对驱动层进行读写操作,如果是异步操作,一般可以进行poll监听,或者由信号来实现,驱动层发送信号给应用层,应用层捕获之后进行处理。或者应用层使用posix定时器来注册一个定时器,然后定时时间到了之后,再执行相应的定时处理函数。内核里面也有定时器,也有中断处理函数。可以看做,一个是应用层面的定时器,一个是内核层面的定时器。
总之,不需要在应用层里去进行中断的处理,中断的执行是在内核态下进行的。