《Milvus Cloud向量数据库指南》——BGE-M3:多功能、多语言、多粒度的文本表示学习模型

news2024/11/16 17:35:15

引言

在自然语言处理(NLP)领域,随着大数据时代的到来,对文本信息的精准处理与高效检索成为了研究热点。BERT(Bidirectional Encoder Representations from Transformers)作为近年来NLP领域的里程碑式模型,以其强大的上下文理解能力在多项任务中取得了显著成效。然而,面对日益复杂和多样化的应用场景,单一的BERT模型在某些特定任务上仍显不足。为此,BGE-M3应运而生,作为BERT的扩展与升级,它旨在通过多功能性(Multi-Functionality)、多语言性(Multi-Linguisticity)和多粒度性(Multi-Granularity)三个方面,进一步增强文本表示的能力,特别是通过生成Learned稀疏向量,为信息检索等任务提供更为精准和高效的解决方案。

BGE-M3概述

BGE-M3是一种先进的机器学习模型,它继承了BERT的核心优势,并在此基础上进行了创新性的扩展。该模型不仅能够生成传统的稠密向量表示,还独特地引入了Learned稀疏向量的生成机制,以适应那些对文本细节要求极高的应用场景。通过多功能性、多语言性和多粒度性的设计,BGE-M3能够更全面地捕捉文本中的语义、词汇和结构信息,为NLP任务的性能提升提供了强有力的支持。

BGE-M3的工作原理
1. 分词与编码

与BERT类似,BGE-M3的第一步是将输入文本进行分词处

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1949789.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

一文看懂以太坊智能合约!

点击下方“JavaEdge”,选择“设为星标” 第一时间关注技术干货! 免责声明~ 任何文章不要过度深思! 万事万物都经不起审视,因为世上没有同样的成长环境,也没有同样的认知水平,更「没有适用于所有人的解决方案…

学习笔记之Java篇(0725)

p this 普通方法中,this总是指向调用该方法的对象。 构造方法中,this总是指向正要初始化的对象。 this()调用必须重载的构造方法,避免相同地址初始化代码,但只能在构造方法中用,比企鹅必须位…

相关性模型-正态分布均值假设检验★★★

该博客为个人学习清风建模的学习笔记,部分课程可以在B站:【强烈推荐】清风:数学建模算法、编程和写作培训的视频课程以及Matlab等软件教学_哔哩哔哩_bilibili 目录 1双侧检验 2单侧检验 3t检验 4两个正态总体均值差的检验 5逐对比较法 …

Origin制作线性拟合回归图

选中数据,点下方散点图 调整散点颜色 在分析中打开线性拟合回归 添加文本 显示上轴

四、单线程多路IO复用+多线程业务工作池

文章目录 一、前言1 编译方法 二、单线程多路IO复用多线程业务工作池结构三、重写Client_Context类四、编写Server类 一、前言 我们以及讲完单线程多路IO复用 以及任务调度与执行的C线程池,接下来我们就给他结合起来。 由于项目变大,尝试解耦项目&#…

基于opencv的答题卡识别

文章目录 一、背景需求二、处理步骤图片预处理检测到答题卡轮廓透视变换找每个圆圈的轮廓轮廓排序判断是否答题正确 一、背景需求 传统的手动评分方法耗时且容易出错,自动化评分可以可以显著提高评分过程的速度和准确性、减少人工成本。 答题卡图片处理效果如下&am…

使用法国云手机进行面向法国的社媒营销

在当今数字化和全球化的时代,社交媒体已经成为企业营销和拓展市场的重要工具。对于想进入法国市场的企业来说,如何在海外社媒营销中脱颖而出、抓住更多的市场份额,成为了一个关键问题。法国云手机正为企业提供全新的营销工具,助力…

观测云产品更新 | 异常追踪、场景图表、快照、监控等

观测云更新 异常追踪 1、新增【分析看板】:可视化展示不同指标数据。 2、新增【日程】管理和【通知策略】:对 Issue 的内容范围做进一步通知分配。 场景 1、图表:新增【时间偏移】设置。启用时间偏移后,当查询相对时间区间时&a…

项目架构知识点总结

项目架构知识点总结 【一】重要注解【1】SpringBootApplication(1)⭐️ComponentScan 注解(2)⭐️EnableAutoConfiguration 注解(3)⭐️SpringBootConfiguration 注解(4)Inherited 注…

昇思25天学习打卡营第01天|昇思MindSpore大模型基础j介绍

昇思MindSpore和华为昇思MindSpore大模型学习打卡系列文章,本文仅供参考~ 文章目录 前言一、昇思MindSpore是什么?二、执行流程三、设计理念四、层次结构五、Huawei昇腾AI全栈 前言 随着计算机大模型的不断发展,Ai这门技术也越来越重要&#…

常见CSS属性(二)——浮动

一、浮动简述 浏览器在解析html文档时,正常的顺序是从上往下、从左往右解析。这个正常的解析过程,叫做正常文档流(标准文档流),而浮动就是使得元素脱离文档流,“浮”在浏览器上。 浮动会使元素脱离文档流,不占位置&…

在 MinIO 使用 SVE 将 ARM 带入人工智能数据基础设施领域

MinIO 性能如此之高的原因之一是,我们做了其他人不会或不能做的细粒度工作。从 SIMD 加速到 AVX-512 优化,我们已经完成了艰巨的任务。ARM CPU 架构的最新发展,特别是可扩展矢量扩展 (SVE),为我们提供了比前…

网页秒表小工具

网页秒表小工具 效果展示 HTML代码 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><title>简洁秒表</title><style>body {font-family: Arial, sans-serif;display: flex;justify-content:…

现货白银交易中spring形态的应用

在现货白银市场中交易想取得成功并从市场中获利&#xff0c;掌握一些工具是必不可少的&#xff0c;而今天我们要介绍的现货白银的交易工具就是spring形态。 对于spring这个英文&#xff0c;我们都很熟悉&#xff0c;它有春天的意思&#xff0c;但这里所说的spring形态并不是指春…

重塑生态体系 深挖应用场景 萤石诠释AI时代智慧生活新图景

7月24日&#xff0c;“智动新生&#xff0c;尽在掌控”2024萤石夏季新品发布会在杭州举办。来自全国各地的萤石合作伙伴、行业从业者及相关媒体&#xff0c;共聚杭州&#xff0c;共同见证拥抱AI的萤石&#xff0c;将如何全新升级&#xff0c;AI加持下的智慧生活又有何不同。 发…

架构设计面试经验总结

文章收录在网站&#xff1a;http://hardyfish.top/ 文章收录在网站&#xff1a;http://hardyfish.top/ 文章收录在网站&#xff1a;http://hardyfish.top/ 文章收录在网站&#xff1a;http://hardyfish.top/ 学习架构设计知识的思路总结为以下几点&#xff1a; 想要学习架构…

Python + PyQt 搭建可视化页面(PyCharm)

Python PyQt 搭建可视化页面&#xff08;PyCharm&#xff09; 配置PyQt5环境 1.1 安装PyQt5和PyQt5-tools pip install PyQt5pip install PyQt5-tools1.2 QtDesigner和PyUIC环境的配置 配置QTDesigner&#xff0c;用来打开QT可视化开发工具 在PyCharm中依次打开&#xff1a…

经典文献阅读之--World Models for Autonomous Driving(自动驾驶的世界模型:综述)

Tip: 如果你在进行深度学习、自动驾驶、模型推理、微调或AI绘画出图等任务&#xff0c;并且需要GPU资源&#xff0c;可以考虑使用UCloud云计算旗下的Compshare的GPU算力云平台。他们提供高性价比的4090 GPU&#xff0c;按时收费每卡2.6元&#xff0c;月卡只需要1.7元每小时&…

2024-07-24 Linux C語言使用inotify进行文件变化检测

一、在Linux中&#xff0c;用C语言检测文件内容变化的方法有几种&#xff0c;最常用的包括以下几种&#xff1a; 轮询&#xff08;Polling&#xff09;&#xff1a;周期性地读取文件并检查内容是否变化。inotify&#xff1a;使用Linux内核提供的inotify接口&#xff0c;这是一…

【AIGC】构建自己的谷歌搜索引擎服务并使用

一、谷歌 谷歌的搜索引擎需要自己创建服务才能启用检索api。&#xff08;需自行翻墙和创建自己的谷歌账号&#xff09; 1.1 API服务创建 1&#xff09;登陆https://console.cloud.google.com/: 2&#xff09; 选择新建项目&#xff0c;取号项目名即可&#xff08;比如:Olin…