java包装类型缓存简单探究-Integer为例

news2024/9/22 23:30:48

文章目录

  • 包装类型缓存
  • 自动装箱与valueOf
  • 感悟
  • 结语

包装类型缓存

包装类型缓存是什么
本文以常用的Integer包装类为例做一个探索,感兴趣可以用类似方法查看其他包装类。
我们都知道它会缓存 -128到127之间的整数Integer对象。
结论大伙都知道。那么我们今天就来探究一下底层是怎么做的。

自动装箱与valueOf

我们都知道包装类会使用valueOf()方法自动装箱
Integer a = 10;实质上在编译成class文件后是使用了valueOf()方法生成一个Integer对象
当我想调试进入这个函数发现会直接完成这个语句。而不是进入valueOf
所以就想到了反编译。我们来看看实际的java字节码指令是什么样的

public class IntegerTest {
    public static void main(String[] args) {
        Integer a = 10;
    }
}

上面是执行的程序
我们用javap指令进行反编译拿到字节码指令和汇编代码。
这里我是用idea直接运行了这段代码。
target/classes目录下会生成class文件。

在这里插入图片描述
这就是java的字节码文件,我们使用反编译命令javap
控制台到该class文件目录,javap -c IntegerTest.class 可以生成
-c参数表示对代码进行反汇编。
输出如下:

 Compiled from "IntegerTest.java"
public class IntegerTest {
  public IntegerTest();
    Code:
       0: aload_0
       1: invokespecial #1                  // Method java/lang/Object."<init>":()V
       4: return

  public static void main(java.lang.String[]);
    Code:
       0: bipush        10          
       2: invokestatic  #2                  // Method java/lang/Integer.valueOf:(I)Ljava/lang/Integer;
       5: astore_1
       6: return
}

上半部分是默认的构造函数
我们直接看后半部分,我们的main函数
bipush 10,是把我们赋的值压入操作数栈
invokestatic 调用Integer.valueOf(int)方法,将操作数栈顶的int值转换为Integer对象
astore_1表示把刚才的Integer对象存储在局部变量表的索引1位置
我有用javap -v 查看了一下局部变量表
在这里插入图片描述
即把valueOf生产的Integer对象由我们声明的变量引用。

同时我们可以看到中间调用静态方法的注释

// Method java/lang/Integer.valueOf:(I)Ljava/lang/Integer;
很明显调用的就是valueOf方法。
我们来看看这个静态方法

public static Integer valueOf(int i) {
        if (i >= IntegerCache.low && i <= IntegerCache.high)
            return IntegerCache.cache[i + (-IntegerCache.low)];
        return new Integer(i);
    }

这段代码很容易理解
对于大于等于IntegerCache.low小于等于IntegerCache.high的直接使用IntegerCache中的对象
我们来看看这个静态内部类 IntegerCache(不看也无所谓,简单来说就是IntegerCache这个类预置好了缓存的范围,通过静态代码块完成对Integer对象的缓存。默认下限-128,上限127,此范围内的Integer会存放在IntegerCacheInteger数组中)

private static class IntegerCache {
        static final int low = -128;
        static final int high;
        static final Integer cache[];

        static {
            // high value may be configured by property
            int h = 127;
            String integerCacheHighPropValue =
                sun.misc.VM.getSavedProperty("java.lang.Integer.IntegerCache.high");
            if (integerCacheHighPropValue != null) {
                try {
                    int i = parseInt(integerCacheHighPropValue);
                    i = Math.max(i, 127);
                    // Maximum array size is Integer.MAX_VALUE
                    h = Math.min(i, Integer.MAX_VALUE - (-low) -1);
                } catch( NumberFormatException nfe) {
                    // If the property cannot be parsed into an int, ignore it.
                }
            }
            high = h;

            cache = new Integer[(high - low) + 1];
            int j = low;
            for(int k = 0; k < cache.length; k++)
                cache[k] = new Integer(j++);

            // range [-128, 127] must be interned (JLS7 5.1.7)
            assert IntegerCache.high >= 127;
        }

        private IntegerCache() {}
    }

由于类加载是懒加载的,内部类加载与外部类加载没有直接关系,仅在使用到时才加载(创建实例 new,调用其方法,使用该类声明等,这个jvm有严格规范。感兴趣可以搜搜)。
所以当我们Integer直接赋值一个缓存区间内的数,调用valueOf方法时就会去integerCache中获取(触发该类的加载,加载过程中会执行静态代码块,即完成缓存数组中对象的创建)。

PS:
IntegerCache代码中可以看到,缓存区间的下限low是定好的,而上限high则是可以通过虚拟机参数调节的。

感悟

源码的注释里提到,缓存是为了提供性能。
这是一个比较重要的思想。我觉得从中可以抽象出两点。
将常用的东西做一个复用,不去重复创建。
同时也提前把常用的创建好,不用等到用时创建,提高响应速度。
即提前热点缓存和重复对象复用。

结语

之前看过不少文章科普这种基础知识,看过一些源码阅读的文章。
这次自己写一篇也算自己阅读源码了,虽然是比较简单的。

这两天才回家事比较多,没有写博客,今天开始恢复更新。

感谢您的阅读,欢迎批评指正。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1946764.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Android】安卓四大组件之广播知识总结

文章目录 动态注册使用BroadcastReceiver监听Intent广播注册Broadcast Receiver 静态注册自定义广播标准广播发送广播定义广播接收器注册广播接收器 有序广播修改发送方法定义第二个广播接收器注册广播接收器广播截断 使用本地广播实践-强制下线使用ActivityCollector管理所有活…

ubuntu那些ppa源在哪

Ubuntu中的 PPA 终极指南 - UBUNTU粉丝之家 什么是PPA PPA 代表个人包存档。 PPA 允许应用程序开发人员和 Linux 用户创建自己的存储库来分发软件。 使用 PPA&#xff0c;您可以轻松获取较新的软件版本或官方 Ubuntu 存储库无法提供的软件。 为什么使用PPA&#xff1f; 正如…

【JavaEE】Spring Boot 自动装配原理(源码分析)

一. 前言 我们在写Spring Boot的程序代码的时候, 可以注入很多我们没有定义过的Bean.例如: Autowired private ApplicationContext applicationContext; Autowired public DataSourceTransactionManager transactionManager; Autowired public AutowireCapableBeanFactory …

软件开发者消除edge浏览器下载时“此应用不安全”的拦截方法

当Microsoft Edge浏览器显示“此应用不安全”或者“已阻止此不安全的下载”这类警告时&#xff0c;通常是因为Windows Defender SmartScreen或者其他安全功能认为下载的文件可能存在安全风险。对于软件开发者来说&#xff0c;大概率是由于软件没有进行数字签名&#xff0c;导致…

Visual Studio 2022新建 cmake 工程测试 tensorRT 自带样例 sampleOnnxMNIST

1. 新建 cmake 工程 vs2022_cmake_sampleOnnxMNIST_test( 如何新建 cmake 工程&#xff0c;请参考博客&#xff1a;Visual Studio 2022新建 cmake 工程测试 opencv helloworld ) 2. 删除默认生成的 vs2022_cmake_sampleOnnxMNIST_test.h 头文件 3. 修改默认生成的 vs2022_cma…

【屏显MCU】多媒体接口总结

本文主要介绍【屏显MCU】的基本概念&#xff0c;用于开发过程中的理解 以下是图层叠加示例 【屏显MCU】多媒体接口总结 0. 个人简介 && 授权须知1. 三大引擎1.1 【显示引擎】Display Engine1.1.1 【UI】 图层的概念1.1.2 【Video】 图层的概念1.1.3 图层的 Blending 的…

一键解锁:科研服务器性能匹配秘籍,选择性能精准匹配科研任务和计算需求的服务器

一键解锁&#xff1a;科研服务器性能匹配秘籍 HPC科研工作站服务器集群细分领域迷途小书童 专注于HPC科研服务器细分领域kyfwq001 &#x1f3af;在当今科技飞速发展的时代&#xff0c;科研工作对计算资源的需求日益增长&#x1f61c;。选择性能精准匹配科研任务和计算需求的服…

古籍双层PDF制作教程:保姆级古籍数字化教程

在智慧古籍数字化项目中&#xff0c;很多图书馆要求将古籍导出为双层PDF&#xff0c;并且确保输出双层PDF底层文本与上层图片偏移量控制在1毫米以内。那么本教程带你使用古籍数字化平台&#xff0c;3分钟把一个古籍书籍转化为双侧PDF。 第1步&#xff1a;上传古籍 点批量上传…

前序+中序、中序+后序构造二叉树

https://leetcode.cn/problems/construct-binary-tree-from-preorder-and-inorder-traversal/ https://leetcode.cn/problems/construct-binary-tree-from-inorder-and-postorder-traversal/ 前序中序 前序遍历&#xff0c;节点按照 [根左右] 排序。 中序遍历&#xff0c;节点…

JavaEE - Spring Boot 简介

1.Maven 1.1 什么是Maven 翻译过来就是: Maven是⼀个项⽬管理⼯具。基于POM(Project Object Model,项⽬对象模型)的概念&#xff0c;Maven可以通 过⼀⼩段描述信息来管理项⽬的构建&#xff0c;报告和⽂档的项⽬管理⼯具软件。 可以理解为&#xff1a;Maven是一个项目管理工具…

nginx隐藏server及版本号

1、背景 为了提高nginx服务器的安全性&#xff0c;降低被攻击的风险&#xff0c;需要隐藏nginx的server和版本号。 2、隐藏nginx版本号 在 http {—}里加上 server_tokens off; 如&#xff1a; http {……省略sendfile on;tcp_nopush on;keepalive_timeout 60;tcp_nodelay o…

ROS参数服务器增删改查实操Python

ROS参数服务器增删改查实操Python 环境准备参数服务器新增&#xff08;修改&#xff09;参数参数服务器获取参数参数服务器删除参数 ROS通信机制包括话题通信、服务通信和参数服务器三种通信方式&#xff0c;各原理及代码实现如下表 功能博客链接说明VScode配置 ROS 环境VScode…

《后端程序猿 · @Value 注释说明》

&#x1f4e2; 大家好&#xff0c;我是 【战神刘玉栋】&#xff0c;有10多年的研发经验&#xff0c;致力于前后端技术栈的知识沉淀和传播。 &#x1f497; &#x1f33b; CSDN入驻不久&#xff0c;希望大家多多支持&#xff0c;后续会继续提升文章质量&#xff0c;绝不滥竽充数…

基于 HTML+ECharts 实现监控平台数据可视化大屏(含源码)

构建监控平台数据可视化大屏&#xff1a;基于 HTML 和 ECharts 的实现 监控平台的数据可视化对于实时掌握系统状态、快速响应问题至关重要。通过直观的数据展示&#xff0c;运维团队可以迅速发现异常&#xff0c;优化资源配置。本文将详细介绍如何利用 HTML 和 ECharts 实现一个…

Unity3D之TCP网络通信(客户端)

文章目录 概述TCP核心类异步机制 Unity中创建TCP客户端Unity中其它脚本获取TCP客户端接受到的数据后续改进 本文将以Unity3D应用项目作为客户端去连接制定的服务器为例进行相关说明。 Unity官网参考资料&#xff1a; https://developer.unity.cn/projects/6572ea1bedbc2a001ef…

go语言day17 通道channel

Golang-100-Days/Day16-20(Go语言基础进阶)/day18_channel通道.md at master rubyhan1314/Golang-100-Days (github.com) go语言day09 通道 协程的死锁-CSDN博客 channel for range 循环通道对象 单向通道 单项通道常用于函数参数&#xff0c;只是用来限定在函数中只能进行通道…

【Android】广播机制

【Android】广播机制 前言 广播机制是Android中一种非常重要的通信机制&#xff0c;用于在应用程序之间或应用程序的不同组件之间传递信息。广播可以是系统广播&#xff0c;也可以是自定义广播。广播机制主要包括标准广播和有序广播两种类型。 简介 在Android中&#xff0c…

【学一点儿前端】getaddrinfo ENOTFOUND registry.nlark.com“.

问题 今天jenkins打包一个项目&#xff0c;发现报错了 error An unexpected error occurred: "https://registry.nlark.com/xxxxxxxxxx.tgz: getaddrinfo ENOTFOUND registry.nlark.com". 先写解决方案 把yarn.lock文件里面的registry.nlark.com替换为registry.npmmi…

超低功耗ARM Cortex-M33 TZ MCU STM32WBA54、STM32WBA55:通过提升无线性能实现更出色的用户体验

摘要 STM32WBA54、STM32WBA55产品系列同时支持多种无线标准&#xff0c;包括Bluetooth低功耗 5.4&#xff08;已认证&#xff09;、Zigbee、Thread以及可用作Thread边界路由器的Matter。 该产品系列具有出色的灵活性和更强的安全性&#xff0c;可帮助开发人员应对不断变化的无…

二、QGroundControl开发环境搭建

文章目录 环境列表QGC源码下载编译 环境列表 QGC GithubPX4-AutopilotQt 5.15Ubuntu20.04 QGC源码下载编译 官网下载指令 如下 // Clone the repo (or your fork) including submodules: git clone --recursive -j8 https://github.com/mavlink/qgroundcontrol.git // Upda…