【微服务】分布式缓存Redis

news2024/11/20 9:11:11

分布式缓存Redis

  • 基于Redis集群解决单机Redis存在的问题
  • 1.Redis持久化
    • 1.1.RDB持久化
      • 1.1.1.执行时机
      • 1.1.2.RDB原理
      • 1.1.3.小结
    • 1.2.AOF持久化
      • 1.2.1.AOF原理
      • 1.2.2.AOF配置
      • 1.2.3.AOF文件重写
    • 1.3.RDB与AOF对比
  • 2.Redis主从
    • 2.1.搭建主从架构
    • 2.2.主从数据同步原理
      • 2.2.1.全量同步
      • 2.2.2.增量同步
      • 2.2.3.repl_backlog原理
    • 2.3.主从同步优化
    • 2.4.小结
  • 3.Redis哨兵
    • 3.1.哨兵原理
      • 3.1.1.集群结构和作用
      • 3.1.2.集群监控原理
      • 3.1.3.集群故障恢复原理
      • 3.1.4.小结
    • 3.2.搭建哨兵集群
    • 3.3.RedisTemplate
      • 3.3.1.创建Demo工程
      • 3.3.2.引入依赖
      • 3.3.3.配置Redis地址
      • 3.3.4.配置读写分离
  • 4.Redis分片集群
    • 4.1.搭建分片集群
    • 4.2.散列插槽
      • 4.2.1.插槽原理
      • 4.2.1.小结
    • 4.3.集群伸缩
      • 4.3.1.需求分析
      • 4.3.2.创建新的redis实例
      • 4.3.3.添加新节点到redis
      • 4.3.4.转移插槽
    • 4.4.故障转移
      • 4.4.1.自动故障转移
      • 4.4.2.手动故障转移
    • 4.5.RedisTemplate访问分片集群

基于Redis集群解决单机Redis存在的问题

单机的Redis存在四大问题:

在这里插入图片描述

1.Redis持久化

Redis有两种持久化方案:

  • RDB持久化
  • AOF持久化

1.1.RDB持久化

RDB全称Redis Database Backup file(Redis数据备份文件),也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启后,从磁盘读取快照文件,恢复数据。快照文件称为RDB文件,默认是保存在当前运行目录。

1.1.1.执行时机

RDB持久化在四种情况下会执行:

  • 执行save命令
  • 执行bgsave命令
  • Redis停机时
  • 触发RDB条件时

1)save命令

执行下面的命令,可以立即执行一次RDB:

在这里插入图片描述

save命令会导致主进程执行RDB,这个过程中其它所有命令都会被阻塞。只有在数据迁移时可能用到。

2)bgsave命令

下面的命令可以异步执行RDB:

在这里插入图片描述

这个命令执行后会开启独立进程完成RDB,主进程可以持续处理用户请求,不受影响。

3)停机时

Redis停机时会执行一次save命令,实现RDB持久化。

4)触发RDB条件

Redis内部有触发RDB的机制,可以在redis.conf文件中找到,格式如下:

# 900秒内,如果至少有1个key被修改,则执行bgsave , 如果是save "" 则表示禁用RDB
save 900 1  
save 300 10  
save 60 10000 

RDB的其它配置也可以在redis.conf文件中设置:

# 是否压缩 ,建议不开启,压缩也会消耗cpu,磁盘的话不值钱
rdbcompression yes

# RDB文件名称
dbfilename dump.rdb  

# 文件保存的路径目录
dir ./ 

1.1.2.RDB原理

bgsave开始时会fork主进程得到子进程,子进程共享主进程的内存数据。完成fork后读取内存数据并写入 RDB 文件。

fork采用的是copy-on-write技术:

  • 当主进程执行读操作时,访问共享内存;
  • 当主进程执行写操作时,则会拷贝一份数据,执行写操作。

在这里插入图片描述

1.1.3.小结

RDB方式bgsave的基本流程?

  • fork主进程得到一个子进程,共享内存空间
  • 子进程读取内存数据并写入新的RDB文件
  • 用新RDB文件替换旧的RDB文件

RDB会在什么时候执行?save 60 1000代表什么含义?

  • 默认是服务停止时
  • 代表60秒内至少执行1000次修改则触发RDB

RDB的缺点?

  • RDB执行间隔时间长,两次RDB之间写入数据有丢失的风险
  • fork子进程、压缩、写出RDB文件都比较耗时

1.2.AOF持久化

1.2.1.AOF原理

AOF全称为Append Only File(追加文件)。Redis处理的每一个写命令都会记录在AOF文件,可以看做是命令日志文件。

在这里插入图片描述

1.2.2.AOF配置

AOF默认是关闭的,需要修改redis.conf配置文件来开启AOF:

# 是否开启AOF功能,默认是no
appendonly yes
# AOF文件的名称
appendfilename "appendonly.aof"

AOF的命令记录的频率也可以通过redis.conf文件来配:

# 表示每执行一次写命令,立即记录到AOF文件
appendfsync always 
# 写命令执行完先放入AOF缓冲区,然后表示每隔1秒将缓冲区数据写到AOF文件,是默认方案
appendfsync everysec 
# 写命令执行完先放入AOF缓冲区,由操作系统决定何时将缓冲区内容写回磁盘
appendfsync no

三种策略对比:

在这里插入图片描述

1.2.3.AOF文件重写

因为是记录命令,AOF文件会比RDB文件大的多。而且AOF会记录对同一个key的多次写操作,但只有最后一次写操作才有意义。通过执行bgrewriteaof命令,可以让AOF文件执行重写功能,用最少的命令达到相同效果。

在这里插入图片描述

如图,AOF原本有三个命令,但是set num 123 和 set num 666都是对num的操作,第二次会覆盖第一次的值,因此第一个命令记录下来没有意义。

所以重写命令后,AOF文件内容就是:mset name jack num 666

Redis也会在触发阈值时自动去重写AOF文件。阈值也可以在redis.conf中配置:

# AOF文件比上次文件 增长超过多少百分比则触发重写
auto-aof-rewrite-percentage 100
# AOF文件体积最小多大以上才触发重写 
auto-aof-rewrite-min-size 64mb 

1.3.RDB与AOF对比

RDB和AOF各有自己的优缺点,如果对数据安全性要求较高,在实际开发中往往会结合两者来使用。

在这里插入图片描述

2.Redis主从

2.1.搭建主从架构

单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离。

在这里插入图片描述

具体搭建流程参考资料《Redis集群搭建》

2.2.主从数据同步原理

2.2.1.全量同步

主从第一次建立连接时,会执行全量同步,将master节点的所有数据都拷贝给slave节点,流程:

在这里插入图片描述

这里有一个问题,master如何得知salve是第一次来连接呢??

有几个概念,可以作为判断依据:

  • Replication Id:简称replid,是数据集的标记,id一致则说明是同一数据集。每一个master都有唯一的replid,slave则会继承master节点的replid
  • offset:偏移量,随着记录在repl_baklog中的数据增多而逐渐增大。slave完成同步时也会记录当前同步的offset。如果slave的offset小于master的offset,说明slave数据落后于master,需要更新。

因此slave做数据同步,必须向master声明自己的replication id 和offset,master才可以判断到底需要同步哪些数据。

因为slave原本也是一个master,有自己的replid和offset,当第一次变成slave,与master建立连接时,发送的replid和offset是自己的replid和offset。

master判断发现slave发送来的replid与自己的不一致,说明这是一个全新的slave,就知道要做全量同步了。

master会将自己的replid和offset都发送给这个slave,slave保存这些信息。以后slave的replid就与master一致了。

因此,master判断一个节点是否是第一次同步的依据,就是看replid是否一致

如图:

在这里插入图片描述

完整流程描述:

  • slave节点请求增量同步
  • master节点判断replid,发现不一致,拒绝增量同步
  • master将完整内存数据生成RDB,发送RDB到slave
  • slave清空本地数据,加载master的RDB
  • master将RDB期间的命令记录在repl_baklog,并持续将log中的命令发送给slave
  • slave执行接收到的命令,保持与master之间的同步

2.2.2.增量同步

全量同步需要先做RDB,然后将RDB文件通过网络传输个slave,成本太高了。因此除了第一次做全量同步,其它大多数时候slave与master都是做增量同步

什么是增量同步?就是只更新slave与master存在差异的部分数据。如图:

在这里插入图片描述

那么master怎么知道slave与自己的数据差异在哪里呢?

2.2.3.repl_backlog原理

master怎么知道slave与自己的数据差异在哪里呢?

这就要说到全量同步时的repl_baklog文件了。

这个文件是一个固定大小的数组,只不过数组是环形,也就是说角标到达数组末尾后,会再次从0开始读写,这样数组头部的数据就会被覆盖。

repl_baklog中会记录Redis处理过的命令日志及offset,包括master当前的offset,和slave已经拷贝到的offset:

在这里插入图片描述

slave与master的offset之间的差异,就是salve需要增量拷贝的数据了。

随着不断有数据写入,master的offset逐渐变大,slave也不断的拷贝,追赶master的offset:

在这里插入图片描述

直到数组被填满:

在这里插入图片描述

此时,如果有新的数据写入,就会覆盖数组中的旧数据。不过,旧的数据只要是绿色的,说明是已经被同步到slave的数据,即便被覆盖了也没什么影响。因为未同步的仅仅是红色部分。

但是,如果slave出现网络阻塞,导致master的offset远远超过了slave的offset:

在这里插入图片描述

如果master继续写入新数据,其offset就会覆盖旧的数据,直到将slave现在的offset也覆盖:

在这里插入图片描述

棕色框中的红色部分,就是尚未同步,但是却已经被覆盖的数据。此时如果slave恢复,需要同步,却发现自己的offset都没有了,无法完成增量同步了。只能做全量同步。

在这里插入图片描述

2.3.主从同步优化

主从同步可以保证主从数据的一致性,非常重要。

可以从以下几个方面来优化Redis主从就集群:

  • 在master中配置repl-diskless-sync yes启用无磁盘复制,避免全量同步时的磁盘IO。
  • Redis单节点上的内存占用不要太大,减少RDB导致的过多磁盘IO
  • 适当提高repl_baklog的大小,发现slave宕机时尽快实现故障恢复,尽可能避免全量同步
  • 限制一个master上的slave节点数量,如果实在是太多slave,则可以采用主-从-从链式结构,减少master压力

主从从架构图:

在这里插入图片描述

2.4.小结

简述全量同步和增量同步区别?

  • 全量同步:master将完整内存数据生成RDB,发送RDB到slave。后续命令则记录在repl_baklog,逐个发送给slave。
  • 增量同步:slave提交自己的offset到master,master获取repl_baklog中从offset之后的命令给slave

什么时候执行全量同步?

  • slave节点第一次连接master节点时
  • slave节点断开时间太久,repl_baklog中的offset已经被覆盖时

什么时候执行增量同步?

  • slave节点断开又恢复,并且在repl_baklog中能找到offset时

3.Redis哨兵

Redis提供了哨兵(Sentinel)机制来实现主从集群的自动故障恢复。

3.1.哨兵原理

3.1.1.集群结构和作用

哨兵的结构如图:

在这里插入图片描述

哨兵的作用如下:

  • 监控:Sentinel 会不断检查您的master和slave是否按预期工作
  • 自动故障恢复:如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主
  • 通知:Sentinel充当Redis客户端的服务发现来源,当集群发生故障转移时,会将最新信息推送给Redis的客户端

3.1.2.集群监控原理

Sentinel基于心跳机制监测服务状态,每隔1秒向集群的每个实例发送ping命令:

•主观下线:如果某sentinel节点发现某实例未在规定时间响应,则认为该实例主观下线

•客观下线:若超过指定数量(quorum)的sentinel都认为该实例主观下线,则该实例客观下线。quorum值最好超过Sentinel实例数量的一半。

在这里插入图片描述

3.1.3.集群故障恢复原理

一旦发现master故障,sentinel需要在salve中选择一个作为新的master,选择依据是这样的:

  • 首先会判断slave节点与master节点断开时间长短,如果超过指定值(down-after-milliseconds * 10)则会排除该slave节点
  • 然后判断slave节点的slave-priority值,越小优先级越高,如果是0则永不参与选举
  • 如果slave-prority一样,则判断slave节点的offset值,越大说明数据越新,优先级越高
  • 最后是判断slave节点的运行id大小,越小优先级越高。

当选出一个新的master后,该如何实现切换呢?

流程如下:

  • sentinel给备选的slave1节点发送slaveof no one命令,让该节点成为master
  • sentinel给所有其它slave发送slaveof 192.168.150.101 7002 命令,让这些slave成为新master的从节点,开始从新的master上同步数据。
  • 最后,sentinel将故障节点标记为slave,当故障节点恢复后会自动成为新的master的slave节点

在这里插入图片描述

3.1.4.小结

Sentinel的三个作用是什么?

  • 监控
  • 故障转移
  • 通知

Sentinel如何判断一个redis实例是否健康?

  • 每隔1秒发送一次ping命令,如果超过一定时间没有相向则认为是主观下线
  • 如果大多数sentinel都认为实例主观下线,则判定服务下线

故障转移步骤有哪些?

  • 首先选定一个slave作为新的master,执行slaveof no one
  • 然后让所有节点都执行slaveof 新master
  • 修改故障节点配置,添加slaveof 新master

3.2.搭建哨兵集群

具体搭建流程参考资料《Redis集群搭建》

3.3.RedisTemplate

在Sentinel集群监管下的Redis主从集群,其节点会因为自动故障转移而发生变化,Redis的客户端必须感知这种变化,及时更新连接信息。Spring的RedisTemplate底层利用lettuce实现了节点的感知和自动切换。

下面,我们通过一个测试来实现RedisTemplate集成哨兵机制。

3.3.1.创建Demo工程

创建Demo工程

3.3.2.引入依赖

在项目的pom文件中引入依赖:

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

3.3.3.配置Redis地址

然后在配置文件application.yml中指定redis的sentinel相关信息:

spring:
  redis:
    sentinel:
      master: mymaster
      nodes:
        - 192.168.150.101:27001
        - 192.168.150.101:27002
        - 192.168.150.101:27003

3.3.4.配置读写分离

在项目的启动类中,添加一个新的bean:

@Bean
public LettuceClientConfigurationBuilderCustomizer clientConfigurationBuilderCustomizer(){
    return clientConfigurationBuilder -> clientConfigurationBuilder.readFrom(ReadFrom.REPLICA_PREFERRED);
}

这个bean中配置的就是读写策略,包括四种:

  • MASTER:从主节点读取
  • MASTER_PREFERRED:优先从master节点读取,master不可用才读取replica
  • REPLICA:从slave(replica)节点读取
  • REPLICA _PREFERRED:优先从slave(replica)节点读取,所有的slave都不可用才读取master

4.Redis分片集群

4.1.搭建分片集群

主从和哨兵可以解决高可用、高并发读的问题。但是依然有两个问题没有解决:

  • 海量数据存储问题

  • 高并发写的问题

使用分片集群可以解决上述问题,如图:

在这里插入图片描述

分片集群特征:

  • 集群中有多个master,每个master保存不同数据

  • 每个master都可以有多个slave节点

  • master之间通过ping监测彼此健康状态

  • 客户端请求可以访问集群任意节点,最终都会被转发到正确节点

具体搭建流程参考资料《Redis集群搭建》

4.2.散列插槽

4.2.1.插槽原理

Redis会把每一个master节点映射到0~16383共16384个插槽(hash slot)上,查看集群信息时就能看到:

在这里插入图片描述

数据key不是与节点绑定,而是与插槽绑定。redis会根据key的有效部分计算插槽值,分两种情况:

  • key中包含"{}",且“{}”中至少包含1个字符,“{}”中的部分是有效部分
  • key中不包含“{}”,整个key都是有效部分

例如:key是num,那么就根据num计算,如果是{dsc}num,则根据dsc计算。计算方式是利用CRC16算法得到一个hash值,然后对16384取余,得到的结果就是slot值。

在这里插入图片描述

如图,在7001这个节点执行set a 1时,对a做hash运算,对16384取余,得到的结果是15495,因此要存储到103节点。

到了7003后,执行get num时,对num做hash运算,对16384取余,得到的结果是2765,因此需要切换到7001节点

4.2.1.小结

Redis如何判断某个key应该在哪个实例?

  • 将16384个插槽分配到不同的实例
  • 根据key的有效部分计算哈希值,对16384取余
  • 余数作为插槽,寻找插槽所在实例即可

如何将同一类数据固定的保存在同一个Redis实例?

  • 这一类数据使用相同的有效部分,例如key都以{typeId}为前缀

4.3.集群伸缩

redis-cli --cluster提供了很多操作集群的命令,可以通过下面方式查看:

在这里插入图片描述

比如,添加节点的命令:

在这里插入图片描述

4.3.1.需求分析

需求:向集群中添加一个新的master节点,并向其中存储 num = 10

  • 启动一个新的redis实例,端口为7004
  • 添加7004到之前的集群,并作为一个master节点
  • 给7004节点分配插槽,使得num这个key可以存储到7004实例

这里需要两个新的功能:

  • 添加一个节点到集群中
  • 将部分插槽分配到新插槽

4.3.2.创建新的redis实例

创建一个文件夹:

mkdir 7004

拷贝配置文件:

cp redis.conf /7004

修改配置文件:

sed /s/6379/7004/g 7004/redis.conf

启动

redis-server 7004/redis.conf

4.3.3.添加新节点到redis

添加节点的语法如下:

在这里插入图片描述

执行命令:

redis-cli --cluster add-node  192.168.150.101:7004 192.168.150.101:7001

通过命令查看集群状态:

redis-cli -p 7001 cluster nodes

如图,7004加入了集群,并且默认是一个master节点:

在这里插入图片描述

但是,可以看到7004节点的插槽数量为0,因此没有任何数据可以存储到7004上

4.3.4.转移插槽

我们要将num存储到7004节点,因此需要先看看num的插槽是多少:

在这里插入图片描述

如上图所示,num的插槽为2765.

我们可以将0~3000的插槽从7001转移到7004,命令格式如下:

在这里插入图片描述

具体命令如下:

建立连接:

在这里插入图片描述

得到下面的反馈:

在这里插入图片描述

询问要移动多少个插槽,我们计划是3000个:

新的问题来了:

在这里插入图片描述

那个node来接收这些插槽??

显然是7004,那么7004节点的id是多少呢?

在这里插入图片描述

复制这个id,然后拷贝到刚才的控制台后:

在这里插入图片描述

这里询问,你的插槽是从哪里移动过来的?

  • all:代表全部,也就是三个节点各转移一部分
  • 具体的id:目标节点的id
  • done:没有了

这里我们要从7001获取,因此填写7001的id:

在这里插入图片描述

填完后,点击done,这样插槽转移就准备好了:

在这里插入图片描述

确认要转移吗?输入yes:

然后,通过命令查看结果:

在这里插入图片描述

可以看到:

在这里插入图片描述

目的达成。

4.4.故障转移

集群初识状态是这样的:

在这里插入图片描述

其中7001、7002、7003都是master,我们计划让7002宕机。

4.4.1.自动故障转移

当集群中有一个master宕机会发生什么呢?

直接停止一个redis实例,例如7002:

redis-cli -p 7002 shutdown

1)首先是该实例与其它实例失去连接

2)然后是疑似宕机:

在这里插入图片描述

3)最后是确定下线,自动提升一个slave为新的master:

在这里插入图片描述

4)当7002再次启动,就会变为一个slave节点了:

在这里插入图片描述

4.4.2.手动故障转移

利用cluster failover命令可以手动让集群中的某个master宕机,切换到执行cluster failover命令的这个slave节点,实现无感知的数据迁移。其流程如下:

在这里插入图片描述

这种failover命令可以指定三种模式:

  • 缺省:默认的流程,如图1~6歩
  • force:省略了对offset的一致性校验
  • takeover:直接执行第5歩,忽略数据一致性、忽略master状态和其它master的意见

案例需求:在7002这个slave节点执行手动故障转移,重新夺回master地位

步骤如下:

1)利用redis-cli连接7002这个节点

2)执行cluster failover命令

如图:

在这里插入图片描述

效果:

在这里插入图片描述

4.5.RedisTemplate访问分片集群

RedisTemplate底层同样基于lettuce实现了分片集群的支持,而使用的步骤与哨兵模式基本一致:

1)引入redis的starter依赖

2)配置分片集群地址

3)配置读写分离

与哨兵模式相比,其中只有分片集群的配置方式略有差异,如下:

spring:
  redis:
    cluster:
      nodes:
        - 192.168.150.101:7001
        - 192.168.150.101:7002
        - 192.168.150.101:7003
        - 192.168.150.101:8001
        - 192.168.150.101:8002
        - 192.168.150.101:8003

如有不足,请多指教,
未完待续,持续更新!
大家一起进步!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/194478.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

UVM实战(张强)--- UART实例代码详细注解

目录一、整体的设计结构图二、各个组件代码详解2.1 DUT2.2 my_driver2.3 my_transaction2.4 my_env2.5 my_monitor2.6 my_agent2.7 my_model2.8 my_scoreboard2.9 my_sequencer2.10 base_test2.11 my_case02.12 my_case1一、整体的设计结构图 各个模块的基础介绍&#xff1a; &…

Spring核心——面向切面编程(AOP)

Spring核心——AOP&#xff08;Aspect-oriented programming&#xff09;一、概念二、作用三、AOP核心概念1.连接点&#xff08;JoinPoint&#xff09;2.切入点&#xff08;Pointcut&#xff09;3.通知&#xff08;Advice&#xff09;4.通知类5.切面&#xff08;Aspect&#xf…

c语言 结构体 动态内存 动态内存管理 模拟实现atoi 找单身狗 文件操作程序编译和链接 预处理 交换奇偶位 offsetof宏的实现 习题

结构体大小 【题目名称】 在32位系统环境&#xff0c;编译选项为4字节对齐&#xff0c;那么sizeof(A)和sizeof(B)是&#xff08; C &#xff09; 对齐数是取其较小值 struct A {int a;short b;int c;char d; }; struct B {int a;short b;char c;int d; };【题目内容】 A. 1…

小程序项目学习--第五章:项目实战一

第五章&#xff1a;项目实战一、 01_(了解)音乐小程序的项目介绍 坑关于Vant Weapp中组件引入未找到的解决方案 [ pages/main-music/main-music.json 文件内容错误] pages/main-music/main-music.json: [“usingComponents”][“van-search”]: “vant/weapp/search/index”…

阿里云们扎堆集结,数据库黄金时代到了?

配图来自Canva可画 作为全球数一数二的信息产业大国&#xff0c;我国在信息技术软硬件底层标准、架构、产品以及生态体系方面&#xff0c;长期被外商“卡脖子”&#xff0c;其中数据库市场更是长期被甲骨文等外商公司所占据。 近年来伴随着信创产业的高速发展&#xff0c;国内…

第七章 idea集成git本地库操作

第一节 配置忽略文件 1、哪些文件需要忽略&#xff1f; 对于git来说可以忽略的文件 Eclipse工程特定文件 IDEA工IDEA工程特定文件 编译产生的二进制文件&#xff08;对于Maven工程来说就是target目录&#xff09; 2、为什么要忽略这些文件&#xff1f; 与项目的实际功能无…

巧用Golang泛型,简化代码编写

作者 | 百度小程序团队 导读 本文整理了很多的泛型应用技巧&#xff0c;结合具体的实际代码示例&#xff0c;特别是很多直接对Go语言内置的类库的实现进行改造&#xff0c;再通过两者在使用上直观对比&#xff0c;帮助大家对泛型使用思考上提供了更多思路&#xff0c;定会帮助大…

【教程】Python:IDLE开发环境安装与配置保姆级教学

【教程】Python&#xff1a;IDLE开发环境安装与配置保姆级教学下载地址安装步骤编写你的Python程序IDLE交互界面&#xff08;交互式运行&#xff09;IDLE编辑器&#xff08;文件式运行&#xff09;下载地址 请访问官网&#xff1a;python解释器安装 安装步骤 若安装最新版本…

FPGA的ADC信号采集ADS52J90-JESD204B接口

jesd204b实战操作笔记 本篇的内容是基于博主设计的jesd204b接口的ADC和FPGA的硬件板卡&#xff0c;通过调用jesd204b ip核来一步步在FPGA内部实现高速ADC数据采集&#xff0c;jesd204b协议和xilinx 的jesd204 IP核相关基本知识已在前面多篇文章中详细介绍&#xff0c;这里不再…

设计师们都在用的5款有限元分析软件推荐

最好的有限元分析软件可以让您测试物体如何受到外部因素的影响。例如&#xff0c;一家公司可以使用 FEA 软件来测试更新后的产品&#xff0c;看看它是否受到振动、热量和其他因素的影响。前 5 名有限元分析软件ANSYS - 具有基于任务的界面OpenFOAM - 可选择插值SimScale - 在线…

QT打包成windows软件

在QTCreator中将Debug模式切换到Release模式&#xff0c;进行编译在项目文件中找到Release模式构建的文件夹进入里面的有一个release的文件&#xff0c;这个文件里就是我们需要的东西进入里面&#xff0c;会有一个.exe的启动程序&#xff0c;但现在是启动不了的&#xff0c;需要…

常用不等式

整理自一个知乎大佬的回答Cauchy-Schwarz积分不等式在上可积,有:取等号的充要条件是存在常数,使得Hlder 积分不等式Minkowski 积分不等式Chebyshev 积分不等式设在上是连续函数,并且在上单调递增,则Kantorovich 积分不等式设函数均在区间上可积,且在上满足,则Jensen 积分不等式…

ES6迭代器 Iterator 详细介绍

文章目录前言一、Iterator二、迭代过程三、可迭代的数据结构3.1 Array3.2 String3.3 Map3.4 Set3.5 arguments总结前言 迭代器&#xff0c;是 ES6 引入的一种新的遍历机制&#xff0c;主要讲解的是 Iterator 、迭代过程、可迭代的数据结构。 一、Iterator Iterator 是 ES6 引…

MAC泛洪攻击-ARPDOS攻击-ARP Middleman攻击-IP地址欺骗-ICMP DOS 攻击

项目二 目录 文章目录一、搭建实验环境&#xff1a;1. 网络环境架构2. 实验环境与工具:3. 搭建两侧的局域网4. 搭建路由二、MAC泛洪攻击1. 实验环境2. 实验过程3. 实验分析&#xff1a;三、ARP DOS攻击1. 实验环境2. 实验过程3. 实验分析&#xff1a;四、ARP Middleman 攻击1. …

《SQL基础》08. 多表查询

SQL - 多表查询多表查询多表关系一对多多对多一对一多表查询概述分类内连接外连接自连接联合查询子查询分类标量子查询列子查询行子查询表子查询案例多表查询 多表关系 项目开发中&#xff0c;在进行数据库表结构设计时&#xff0c;会根据业务需求及业务模块之间的关系&#…

使用MySQL数据库,实现你的第一个JDBC程序

熟悉了JDBC的编程步骤后&#xff0c;接下来通过一个案例并依照上一小节所讲解的步骤来演示JDBC的使用。此案例会从tb_user表中读取数据&#xff0c;并将结果打印在控制台。需要说明的是&#xff0c;Java中的JDBC是用来连接数据库从而执行相关数据相关操作的&#xff0c;因此在使…

双面电子会议桌牌

产品特征&#xff1a; 超低功耗&#xff0c;3-5年电池寿命电子纸墨水屏幕&#xff0c;视角接近180多种电子桌牌显示颜色可选 3色&#xff08;黑&#xff0c;白&#xff0c;红&#xff09; 4色&#xff08;黑&#xff0c;白&#xff0c;红&#xff0c;黄&#xff09; 7色&…

营销大数据如何帮助企业深入了解客户—镭速

随着互联网的进一步发展&#xff0c;大门向您的企业敞开大门&#xff0c;让您在如何使用数据为客户提供他们所寻求的个性化&#xff0c;令人兴奋和引人入胜的体验方面更具创造性和创新性。大数据是了解客户究竟是谁以及如何与他们互动的关键部分。 行动中的见解 随着智能手机…

听劝,不要试图以编程为基础去学习网络安全

目录一、网络安全学习的误区1.不要试图以编程为基础去学习网络安全2.不要刚开始就深度学习网络安全3.收集适当的学习资料4.适当的报班学习二、学习网络安全的些许准备1.硬件选择2.软件选择3.外语能力三、网络安全学习路线第一阶段&#xff1a;基础操作入门第二阶段&#xff1a;…

什么是基站定位?

基站与信号塔首先&#xff0c;我们先介绍一下基站。基站包括移动、联通和电信基站&#xff0c;当手机开机、关机、切换基站时都会向最近最优基站赋权。其主要功能是负责用户手机端信号传出工作&#xff0c;包括语音通话、网络访问等各项业务。这里我们特别强调一个误区&#xf…