TDD,测试驱动开发,英文全称Test-Driven Development,简称TDD,是一种不同于传统软件开发流程的新型的开发方法。它要求在编写某个功能的代码之前先编写测试代码,然后只编写使测试通过的功能代码,通过测试来推动整个开发的进行。这有助于编写简洁可用和高质量的代码,并加速开发过程。
简言之TDD是通过设计 Test 来完成软件设计的一种高效可行的软件开发模式。
为何更丰富地达成测试的目的,googletes是绕不过去的,本文备忘主要关注 googletest 主体的分析过程和结论,即,googleTest框架中是如何通过相关的测试宏的,实现测试的目的。
TEST TEST_F TEST_P 等等
1,googleTest 环境与简单示例
1.1 下载 googletest 并编译
下载:
$ git clone https://github.com/google/googletest.git
$ git checkout release-1.10.0
编译:
$ mkdir build
$ cd build/
$ export CXXFLAGS="-Wno-error=maybe-uninitialized"
$ cmake ..
$ make -j
$ ls lib/
默认为 release,若debug版本则须:
$ cmake .. -DCMAKE_BUILD_TYPE=Debug
成果:
1.2 示例1 验证函数 add
源码
#include <iostream>
#include "gtest/gtest.h"
int add_int_int(int a, int b){
return a+b;
}
TEST(SumFuncTest, twoNumbers){
EXPECT_EQ(add_int_int(3,4),7);
EXPECT_EQ(27, add_int_int(9, 18));
}
GTEST_API_ int main(int argc, char** argv) {
printf("Running main() from %s\n", __FILE__);
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}
运行:
1.3 示例 2
#include <gtest/gtest.h>
int Foo(int a, int b)
{
if (a == 0 || b == 0)
{
throw "don't do that";
}
int c = a % b;
if (c == 0)
return b;
return Foo(b, c);
}
TEST(FooTest, HandleNoneZeroInput)
{
EXPECT_EQ(2, Foo(4, 10));
EXPECT_EQ(6, Foo(30, 18));
}
g++ foo.cpp -I ../../googletest/googletest/include -L ../../googletest/build_dbg/lib -lgtest -lgtest_main
编译运行:
1.4 示例3
源码:
#include <iostream>
#include "gtest/gtest.h"
// add_util.cc
float add_from_left(float a, float b, float c, float d, float e)
{
float sum = 0.0;
sum += c;
sum += a;
sum += b;
//sum += c;
sum += d;
sum += e;
/*
sum += a;
sum += b;
sum += c;
sum += d;
sum += e;
*/
printf("add_from_left: sum = %f\n", sum);
return sum;
}
float add_from_right(float a, float b, float c, float d, float e)
{
float sum = 0.0;
sum += e;
sum += d;
sum += c;
sum += b;
sum += a;
printf("add_from_right: sum = %f\n", sum);
return sum;
}
int sum(int a, int b){
return a+b;
}
TEST(AddFuncTest, floatVSfloat) {
printf("AddFuncTest: float sum = %f\n", 1.238f + 3.7f + 0.000353265f + 7898.3f + 12.23209f);
printf("AddFuncTest: double sum = %f\n", 12.23209 + 7898.3 + 0.000353265 + 3.7 + 1.238);
EXPECT_EQ(1.238f + 3.7f + 0.000353265f + 7898.3f + 12.23209f, add_from_left(1.238, 3.7, 0.000353265, 7898.3, 12.23209));
EXPECT_EQ(1.238f + 3.7f + 0.000353265f + 7898.3f + 12.23209f, add_from_right(1.238, 3.7, 0.000353265, 7898.3, 12.23209));
//
}
TEST(AddFuncTest, doubleVSfloat) {
printf("AddFuncTest: float sum = %f\n", 1.238f + 3.7f + 0.000353265f + 7898.3f + 12.23209f);
printf("AddFuncTest: double sum = %f\n", 12.23209 + 7898.3 + 0.000353265 + 3.7 + 1.238);
EXPECT_EQ(1.238f + 3.7f + 0.000353265f + 7898.3f + 12.23209f, add_from_left(1.238, 3.7, 0.000353265, 7898.3, 12.23209));
EXPECT_EQ(1.238 + 3.7 + 0.000353265 + 7898.3 + 12.23209, add_from_right(1.238, 3.7, 0.000353265, 7898.3, 12.23209));
//
}
TEST(SumFuncTest, twoNumbers){
EXPECT_EQ(sum(3,4),7);
EXPECT_EQ(27, sum(9, 18));
}
GTEST_API_ int main(int argc, char** argv) {
printf("Running main() from %s\n", __FILE__);
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}
Makefile
EXE := hello_gtest_ex hello_gtest_add_int_int
all: $(EXE)
%: %.cpp
g++ -O0 -fno-toplevel-reorder $< -o $@ $(INC) $(LD_FLAGS)
INC := -I../googletest/googletest/include/
LD_FLAGS := -L../googletest/build/lib/ -lgtest -lgtest_main
.PHONY: clean
clean:
-rm -rf $(EXE)
2,示例与源码分析
使用最简单的测试示例,聚焦googletest本身的代码逻辑
观察点,main 函数如何调用到 TEST(...){...} 这种结构中的代码
两种方式互相印证:
方式1,通过编译器的预编译指令 g++ -E ... 生成展开代码;
方式2,通过跟踪源代码,来份些TEST等的展开结果
2.1 TEST
示例代码如上:
simple_gtest.cpp
#include "gtest/gtest.h"
int add_int_int(int a, int b){
return a+b;
}
TEST(SumFuncTest, twoNumbers){
EXPECT_EQ(add_int_int(3,4),7);
}
方式1:
g++ -E simple_gtest.cpp -o simple_gtest.i
展开后,simple_gtest.i文件有8W多行,但是其中对我们理解有意义的也就最尾巴上的几行:
int add_int_int(int a, int b){
return a+b;
}
static_assert(sizeof("SumFuncTest") > 1, "test_suite_name must not be empty");
static_assert(sizeof("twoNumbers") > 1, "test_name must not be empty");
class SumFuncTest_twoNumbers_Test : public ::testing::Test {
public:
SumFuncTest_twoNumbers_Test() {}
private:
virtual void TestBody();
static ::testing::TestInfo* const test_info_ __attribute__ ((unused));
SumFuncTest_twoNumbers_Test(SumFuncTest_twoNumbers_Test const &) = delete; void operator=(SumFuncTest_twoNumbers_Test const &) = delete;
};
::testing::TestInfo* const SumFuncTest_twoNumbers_Test::test_info_ =
::testing::internal::MakeAndRegisterTestInfo( "SumFuncTest", "twoNumbers", nullptr, nullptr, ::testing::internal::CodeLocation("simple_gtest.cpp", 8), (::testing::internal::GetTestTypeId()), ::testing::internal::SuiteApiResolver< ::testing::Test>::GetSetUpCaseOrSuite("simple_gtest.cpp", 8), ::testing::internal::SuiteApiResolver< ::testing::Test>::GetTearDownCaseOrSuite("simple_gtest.cpp", 8), new ::testing::internal::TestFactoryImpl<SumFuncTest_twoNumbers_Test>);
void SumFuncTest_twoNumbers_Test::TestBody()
{
switch (0)
case 0:
default:
if (const ::testing::AssertionResult gtest_ar = (::testing::internal::EqHelper::Compare("add_int_int(3,4)", "7", add_int_int(3,4), 7)))
;
else
::testing::internal::AssertHelper(::testing::TestPartResult::kNonFatalFailure, "simple_gtest.cpp", 9, gtest_ar.failure_message()) = ::testing::Message();
}
分析这段代码会发现,
TEST被展开成为了一个 class SumFuncTest_twoNumbers_Test
它有一个成员函数 TestBody(){....}
观察上述代码中最后一个函数体:void SumFuncTest_twoNumbers_Test::TestBody()
其中出现了被测试的函数等。
这说明,这个函数体中的代码才是是被测试内容,而其外围都是框架。
框架部分只需要把这中类的一个实例添加到某个链表中,然后依次迭代执行每个类的 TestBody成员函数,既可以完成测试任务。
本例中的 class 如下:
通过方法2.来验证一下展开的结果:
第一部分,class 宏
关联TEST宏,我们可以找到如下内容:
#define TEST(test_suite_name, test_name) GTEST_TEST(test_suite_name, test_name)
#define GTEST_TEST(test_suite_name, test_name) \
GTEST_TEST_(test_suite_name, test_name, ::testing::Test, \
::testing::internal::GetTestTypeId())
// Expands to the name of the class that implements the given test.
#define GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
test_suite_name##_##test_name##_Test
// Helper macro for defining tests.
#define GTEST_TEST_(test_suite_name, test_name, parent_class, parent_id) \
static_assert(sizeof(GTEST_STRINGIFY_(test_suite_name)) > 1, \
"test_suite_name must not be empty"); \
static_assert(sizeof(GTEST_STRINGIFY_(test_name)) > 1, \
"test_name must not be empty"); \
class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
: public parent_class { \
public: \
GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() = default; \
~GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() override = default; \
GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
(const GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) &) = delete; \
GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) & operator=( \
const GTEST_TEST_CLASS_NAME_(test_suite_name, \
test_name) &) = delete; /* NOLINT */ \
GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
(GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) &&) noexcept = delete; \
GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) & operator=( \
GTEST_TEST_CLASS_NAME_(test_suite_name, \
test_name) &&) noexcept = delete; /* NOLINT */ \
\
private: \
void TestBody() override; \
static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_; \
}; \
\
::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_suite_name, \
test_name)::test_info_ = \
::testing::internal::MakeAndRegisterTestInfo( \
#test_suite_name, #test_name, nullptr, nullptr, \
::testing::internal::CodeLocation(__FILE__, __LINE__), (parent_id), \
::testing::internal::SuiteApiResolver< \
parent_class>::GetSetUpCaseOrSuite(__FILE__, __LINE__), \
::testing::internal::SuiteApiResolver< \
parent_class>::GetTearDownCaseOrSuite(__FILE__, __LINE__), \
new ::testing::internal::TestFactoryImpl<GTEST_TEST_CLASS_NAME_( \
test_suite_name, test_name)>); \
void GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::TestBody()
其中的如下两行:
class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
: public parent_class { \
TEST 的宏充分展开后,会根据TEST(X,Y) 括号中的X、Y字串定义一个完整的类,并且包含成员函数:
TestBody()
但是展开的内容中,没有这个函数的函数体。
这个函数体正好就是TEST(X,Y){Z} 中,{Z}的这个部分,即,
TestBody(){Z}
只需要在整个测试系统中,讲上面展开生成的class的一个实例,insert进一个链表中,并依次迭代执行链表的每一对象的成员函数 TestBody(){Z},即可达到测试目的。
第二部分,函数体中的宏
关于 EXPECT_EQ,我们会发现如下定义:
#define EXPECT_EQ(val1, val2) \
EXPECT_PRED_FORMAT2(::testing::internal::EqHelper::Compare, val1, val2)
而其中的 EXPECT_PRED_FORMAT2 又被展开为如下:
// Binary predicate assertion macros.
#define EXPECT_PRED_FORMAT2(pred_format, v1, v2) \
GTEST_PRED_FORMAT2_(pred_format, v1, v2, GTEST_NONFATAL_FAILURE_)
又 GTEST_PRED_FORMAT2_ 被定义为:
#define GTEST_PRED_FORMAT2_(pred_format, v1, v2, on_failure) \
GTEST_ASSERT_(pred_format(#v1, #v2, v1, v2), on_failure)
而且其中的 GTEST_ASSERT_ 被展开为:
#define GTEST_ASSERT_(expression, on_failure) \
GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
if (const ::testing::AssertionResult gtest_ar = (expression)) \
; \
else \
on_failure(gtest_ar.failure_message())
其中 GTEST_AMBIGUOUS_ELSE_BLOCKER_ 展开为:
#define GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
switch (0) \
case 0: \
default: // NOLINT
于是得到函数体为:
总之,只需要调用这个 TestBody() 函数,即可完成测试任务。
2.2 TEST_F
2.2.1 小示例编译与运行
保持关于 TEST 宏分析的记忆,我们以一个简单的示例来分析 TEST_F 宏,
#include <gtest/gtest.h>
class SampleTestWithFixture : public ::testing::Test {
protected:
void SetUp() override {
a_ = 1;
b_ = 2;
}
int a_;
int b_;
};
TEST_F(SampleTestWithFixture, Case2) {
a_ = 3;
EXPECT_EQ(a_ + b_, 5);
}
Makefile:
EXE := hello_gtest_f
all: $(EXE)
%: %.cpp
g++ -g -fno-toplevel-reorder $< -o $@ $(INC) $(LD_FLAGS)
# g++ -E hello_gtest_f.cpp -I ../googletest/googletest/include/ -o hello_gtest_f.i
#g++ -g -fno-toplevel-reorder $< -o $@ $(INC) $(LD_FLAGS)
INC := -I../../googletest/googletest/include/
LD_FLAGS := -L../../googletest/build_dbg/lib/ -lgtest -lgtest_main
.PHONY: clean
clean:
-rm -rf $(EXE)
编译,确保能够正确运行:
$ make
$ ./hello_gtest_f
2.2.2 TEST_F 宏展开分析
$ g++ -E hello_gtest_f.cpp -I ../googletest/googletest/include/ -o hello_gtest_f.i
生成的预处理后的文件 hello_gtest_f.i 主要内容还是在文件的尾巴上,摘录调整格式如下:
class SampleTestWithFixture : public ::testing::Test {
protected:
void SetUp() override {
a_ = 1;
b_ = 2;
}
int a_;
int b_;
};
static_assert(sizeof("SampleTestWithFixture") > 1, "test_suite_name must not be empty");
static_assert(sizeof("Case2") > 1, "test_name must not be empty");
class SampleTestWithFixture_Case2_Test : public SampleTestWithFixture{
public:
SampleTestWithFixture_Case2_Test() = default;
~SampleTestWithFixture_Case2_Test() override = default;
SampleTestWithFixture_Case2_Test(const SampleTestWithFixture_Case2_Test&) = delete;
SampleTestWithFixture_Case2_Test& operator=( const SampleTestWithFixture_Case2_Test&) = delete;
SampleTestWithFixture_Case2_Test(SampleTestWithFixture_Case2_Test &&) noexcept = delete;
SampleTestWithFixture_Case2_Test& operator=(SampleTestWithFixture_Case2_Test &&) noexcept = delete;
private: void TestBody() override;
static ::testing::TestInfo* const test_info_ __attribute__((unused));
};
::testing::TestInfo* const SampleTestWithFixture_Case2_Test::test_info_
=::testing::internal::MakeAndRegisterTestInfo("SampleTestWithFixture",
"Case2",
nullptr,
nullptr,
::testing::internal::CodeLocation("hello_gtest_f.cpp", 27),
(::testing::internal::GetTypeId<SampleTestWithFixture>()),
::testing::internal::SuiteApiResolver< SampleTestWithFixture>::GetSetUpCaseOrSuite("hello_gtest_f.cpp", 27),
::testing::internal::SuiteApiResolver< SampleTestWithFixture>::GetTearDownCaseOrSuite("hello_gtest_f.cpp", 27),
new ::testing::internal::TestFactoryImpl<SampleTestWithFixture_Case2_Test>);
void SampleTestWithFixture_Case2_Test::TestBody()
{
a_ = 3;
switch (0)
case 0:
default:
if (const ::testing::AssertionResult gtest_ar = (::testing::internal::EqHelper::Compare( "a_ + b_" , "5" , a_ + b_ , 5 )))
;
else
::testing::internal::AssertHelper(::testing::TestPartResult::kNonFatalFailure, "hello_gtest_f.cpp", 29, gtest_ar.failure_message())
= ::testing::Message();
}
跟 TEST 宏的展开类似,组合 TEST_F(X,Y) 的两个参数,构成一个新的类
class X_Y_Test :public SampleTestWithFixture{
...
... TestBody()
}
宏展开的新类中也有一个成员函数 TestBody();
其中 SampleTestWithFixture 是自己定义的类,会被 X_Y_Test 类共有继承走。
而 TEST_F(...){body} 的类似函数体的部分 {body},也同样被安排成为了 TestBody函数的函数体。
接下来,gtest框架会通过成员 X_Y_Test::test_info_ 的静态赋值过程,将本测试用例挂进系统的代运行链表,届时依次迭代 调用 X_Y_Test::TestBody(); 实现测试感兴趣代码的目的。
2.2.3 总结 TEST_F
TEST_F的意图:
TEST_F的目的是为了把关系密切的测试问题汇总到一个class中来进行测试,可以共用同一个类的对象的上下文成员数据。
TEST_F 中,成员函数的执行顺序:
那么,成员函数 Setup( ) 在什么时候执行呢?
先说答案:
1 X_Y_Test() 构造函数;//c++ 语法
2 Setup(); //数据预备,资源申请
3 TestBody(); //测试部分
4 TearDown(); //资源释放
5 X_Y_Test() 析构函数;//c++ 语法
改造刚才的示例:
#include <gtest/gtest.h>
class SampleTestWithFixture : public ::testing::Test {
public:
SampleTestWithFixture(){std::cout<<"construct_STWF"<<std::endl;}
~SampleTestWithFixture(){std::cout<<"destruct_STWF"<<std::endl;}
protected:
void SetUp() override {
std::cout <<"Hello setupupup()000"<<std::endl;
a_ = 1;
b_ = 2;
std::cout <<"Hello setupupup()111"<<std::endl;
}
void TearDown() override {
std::cout <<"Hello teardownnn()000"<<std::endl;
a_ = 4;
b_ = 5;
std::cout <<"Hello teardownnn()111"<<std::endl;
}
int a_;
int b_;
};
TEST_F(SampleTestWithFixture, Case2) {
std::cout <<"test_f Casess222"<<std::endl;
a_ = 3;
EXPECT_EQ(a_ + b_, 5);
}
编译运行:
TEST_F函数体中的部分的一些宏,跟TEST中的一样,展开成为一些比较语句。
2.3 TEST_P
2.3.1 可运行示例
#include "gtest/gtest.h"
namespace TTT
{
namespace testing
{
int g_env_switch = 0;
class BasicTestFixture : public ::testing::TestWithParam<int>
{
public:
BasicTestFixture() {}
void SetUp()
{
g_env_switch = GetParam();
std::cout<<"BTF_SetUp() ges="<<g_env_switch<<std::endl;
}
void TearDown(){}
};
#define OK 0
#define FAIL 1
int envCheckFunc(void)
{
if(g_env_switch > 0) {
return OK;
}else {
return FAIL;
}
}
TEST_P(BasicTestFixture, BasicTest)
{
ASSERT_EQ(envCheckFunc(), OK);
}
INSTANTIATE_TEST_SUITE_P(configSwitch, BasicTestFixture, ::testing::Values(1, 0));
//INSTANTIATE_TEST_SUITE_P(failSwitch, BasicTestFixture, ::testing::Values(2, 3));
}
}
Makefile:
EXE := hello_gtest_p
all: $(EXE)
%: %.cpp
g++ -g -fno-toplevel-reorder $< -o $@ $(INC) $(LD_FLAGS)
# g++ -E hello_gtest_p.cpp -I ../googletest/googletest/include/ -o hello_gtest_p.i
#g++ -g -fno-toplevel-reorder $< -o $@ $(INC) $(LD_FLAGS)
INC := -I../../googletest/googletest/include/
LD_FLAGS := -L../../googletest/build_dbg/lib/ -lgtest -lgtest_main
.PHONY: clean
clean:
-rm -rf $(EXE)
编译执行:
因为故意藏了一个逻辑错误,所以第二个参数时,会测试失败:
2.3.2 无实例化宏的预编译
注释掉程序中的所有 INSTANTIATE_TEST_SUITE_P 的行,不厌其烦地再贴一次:
#include "gtest/gtest.h"
namespace TTT
{
namespace testing
{
int g_env_switch = 0;
class BasicTestFixture : public ::testing::TestWithParam<int>
{
public:
BasicTestFixture() {}
void SetUp()
{
g_env_switch = GetParam();
std::cout<<"BTF_SetUp() ges="<<g_env_switch<<std::endl;
}
void TearDown(){}
};
#define OK 0
#define FAIL 1
int envCheckFunc(void)
{
if(g_env_switch > 0) {
return OK;
}else {
return FAIL;
}
}
TEST_P(BasicTestFixture, BasicTest)
{
ASSERT_EQ(envCheckFunc(), OK);
}
//INSTANTIATE_TEST_SUITE_P(configSwitch, BasicTestFixture, ::testing::Values(1, 0));
//INSTANTIATE_TEST_SUITE_P(failSwitch, BasicTestFixture, ::testing::Values(2, 3));
}
}
g++ -E hello_gtest_p.cpp -I ../googletest/googletest/include/ -o hello_gtest_p.i
这时候预编译后生成的代码如下:
namespace TTT
{
namespace testing
{
int g_env_switch = 0;
class BasicTestFixture : public ::testing::TestWithParam<int>
{
public:
BasicTestFixture() {}
void SetUp()
{
g_env_switch = GetParam();
std::cout<<"BTF_SetUp() ges="<<g_env_switch<<std::endl;
}
void TearDown(){}
};
int envCheckFunc(void)
{
if(g_env_switch > 0) {
return 0;
}else {
return 1;
}
}
class BasicTestFixture_BasicTest_Test : public BasicTestFixture, private ::testing::internal::GTestNonCopyable {
public:
BasicTestFixture_BasicTest_Test() {}
void TestBody() override;
private:
static int AddToRegistry()
{
::testing::UnitTest::GetInstance()
->parameterized_test_registry()
.GetTestSuitePatternHolder<BasicTestFixture>( "BasicTestFixture", ::testing::internal::CodeLocation("hello_gtest_p.cpp", 35))
->AddTestPattern( "BasicTestFixture",
"BasicTest",
new ::testing::internal::TestMetaFactory<BasicTestFixture_BasicTest_Test>(),
::testing::internal::CodeLocation("hello_gtest_p.cpp", 35));
return 0;
}
static int gtest_registering_dummy_ __attribute__((unused));
};
int BasicTestFixture_BasicTest_Test::gtest_registering_dummy_ = BasicTestFixture_BasicTest_Test::AddToRegistry();
void BasicTestFixture_BasicTest_Test::TestBody()
{
switch (0)
case 0:
default:
if (const ::testing::AssertionResult gtest_ar = (::testing::internal::EqHelper::Compare("envCheckFunc()", "0", envCheckFunc(), 0)))
;
else
return ::testing::internal::AssertHelper(::testing::TestPartResult::kFatalFailure, "hello_gtest_p.cpp", 37, gtest_ar.failure_message()) = ::testing::Message();
}
没有实例化宏 的代码,展开到被测试类的 TestBody()函数后就停止了,如上代码中最后一个函数的定义。
2.3.3 有实例化宏的预编译
多了这两句:
INSTANTIATE_TEST_SUITE_P(configSwitch, BasicTestFixture, ::testing::Values(1, 0));
INSTANTIATE_TEST_SUITE_P(failSwitch, BasicTestFixture, ::testing::Values(2, 3));
namespace TTT
{
namespace testing
{
int g_env_switch = 0;
class BasicTestFixture : public ::testing::TestWithParam<int>
{
public:
BasicTestFixture() {}
void SetUp()
{
g_env_switch = GetParam();
std::cout<<"BTF_SetUp() ges="<<g_env_switch<<std::endl;
}
void TearDown(){}
};
int envCheckFunc(void)
{
if(g_env_switch > 0) {
return 0;
}else {
return 1;
}
}
class BasicTestFixture_BasicTest_Test : public BasicTestFixture, private ::testing::internal::GTestNonCopyable {
public:
BasicTestFixture_BasicTest_Test() {}
void TestBody() override;
private:
static int AddToRegistry()
{
::testing::UnitTest::GetInstance()
->parameterized_test_registry()
.GetTestSuitePatternHolder<BasicTestFixture>( "BasicTestFixture", ::testing::internal::CodeLocation("hello_gtest_p.cpp", 35))
->AddTestPattern( "BasicTestFixture",
"BasicTest",
new ::testing::internal::TestMetaFactory<BasicTestFixture_BasicTest_Test>(),
::testing::internal::CodeLocation("hello_gtest_p.cpp",
35));
return 0;
}
static int gtest_registering_dummy_ __attribute__((unused));
};
int BasicTestFixture_BasicTest_Test::gtest_registering_dummy_ = BasicTestFixture_BasicTest_Test::AddToRegistry();
void BasicTestFixture_BasicTest_Test::TestBody()
{
switch (0)
case 0:
default:
if (const ::testing::AssertionResult gtest_ar = (::testing::internal::EqHelper::Compare( "envCheckFunc()", "0", envCheckFunc(), 0)))
;
else
return ::testing::internal::AssertHelper(::testing::TestPartResult::kFatalFailure, "hello_gtest_p.cpp", 37, gtest_ar.failure_message()) = ::testing::Message();
}
//TEST_P(X, Y, ...){}
// 跟 TEST_F的展开比较接近,同样是将 TEST_P(){...} 的{...} 部分,作为TestBody的函数体;
// 但,一个重要不懂的地方在于,TEST_P 展开为被测试模式或模版,真正注册近被执行队列,是INSTANTIATE_TEST_SUITE_P的工作。
//INSTANTIATE_TEST_SUITE_P(X, Y, ...)的展开位三个函数
//参数容器函数:gtest_XY_EvaluGenerator_ 测试参数值;
//被测试类函数:gtest_XY_EvalGenerateName_ 测试参数类型;
//测试类压栈函数:gtest_XY_dummy_ 将测试类实例化后 push进带测试队列中,通过调用 AddTestSuiteInstantiation
//展开,INSTANTIATE_TEST_SUITE_P(configSwitch, BasicTestFixture, ::testing::Values(1, 0));
static ::testing::internal::ParamGenerator<BasicTestFixture::ParamType> gtest_configSwitchBasicTestFixture_EvalGenerator_()
{
return::testing::Values(1, 0);
}
static ::std::string gtest_configSwitchBasicTestFixture_EvalGenerateName_( const ::testing::TestParamInfo<BasicTestFixture::ParamType>& info)
{
if (::testing::internal::AlwaysFalse()) {
::testing::internal::TestNotEmpty(::testing::internal::DefaultParamName<BasicTestFixture::ParamType>);
auto t = std::make_tuple(::testing::Values(1, 0));
static_assert(std::tuple_size<decltype(t)>::value <= 2, "Too Many Args!");
}
return ((::testing::internal::DefaultParamName<BasicTestFixture::ParamType>))(info);
}
static int gtest_configSwitchBasicTestFixture_dummy_ __attribute__((unused))
= ::testing::UnitTest::GetInstance()
->parameterized_test_registry()
.GetTestSuitePatternHolder<BasicTestFixture>("BasicTestFixture", ::testing::internal::CodeLocation("hello_gtest_p.cpp", 40))
->AddTestSuiteInstantiation("configSwitch",
>est_configSwitchBasicTestFixture_EvalGenerator_,
>est_configSwitchBasicTestFixture_EvalGenerateName_,
"hello_gtest_p.cpp",
40);
//展开,INSTANTIATE_TEST_SUITE_P(failSwitch, BasicTestFixture, ::testing::Values(2, 3));
static ::testing::internal::ParamGenerator<BasicTestFixture::ParamType> gtest_failSwitchBasicTestFixture_EvalGenerator_()
{
return::testing::Values(2, 3);
}
static ::std::string gtest_failSwitchBasicTestFixture_EvalGenerateName_( const ::testing::TestParamInfo<BasicTestFixture::ParamType>& info)
{
if (::testing::internal::AlwaysFalse()) {
::testing::internal::TestNotEmpty(::testing::internal::DefaultParamName<BasicTestFixture::ParamType>);
auto t = std::make_tuple(::testing::Values(2, 3));
static_assert(std::tuple_size<decltype(t)>::value <= 2, "Too Many Args!");
}
return ((::testing::internal::DefaultParamName<BasicTestFixture::ParamType>))(info);
}
static int gtest_failSwitchBasicTestFixture_dummy_ __attribute__((unused))
= ::testing::UnitTest::GetInstance()
->parameterized_test_registry()
.GetTestSuitePatternHolder<BasicTestFixture>("BasicTestFixture", ::testing::internal::CodeLocation("hello_gtest_p.cpp", 41))
->AddTestSuiteInstantiation("failSwitch",
>est_failSwitchBasicTestFixture_EvalGenerator_,
>est_failSwitchBasicTestFixture_EvalGenerateName_,
"hello_gtest_p.cpp",
41);
}
}
2.3.4 分析 TEST_P 和
TEST_P(X, Y, ...){...}的展开 跟 TEST_F的展开比较接近,继承用户自定义类后,定义一个新类,含有成员函数 TestBody,同样是将 TEST_P(){...} 的{...} 部分,作为TestBody的函数体;
但,一个重要不同的地方在于,TEST_P 展开为被测试模式或模版,真正注册近被执行队列,是INSTANTIATE_TEST_SUITE_P的工作。
INSTANTIATE_TEST_SUITE_P(X, Y, ...)的展开位三个函数
1,参数容器函数:gtest_XY_EvaluGenerator_ 测试参数值;
2,被测试类函数:gtest_XY_EvalGenerateName_ 测试参数类型;
3,测试类压栈函数:gtest_XY_dummy_ 将测试类实例化后 push进带测试队列中,通过调用 AddTestSuiteInstantiation,压栈入队,等待main函数依次迭代调用各个类实例的 TestBody()成员函数,完成测试任务。
而其中的SetUp(), TearDown()等成员函数的调用,跟TEST_F的调用时机相同。
3. 总结
掌握 googletest的使用,
首先需要理解,TESTXXX(){...}结构中,{...}会被展开为一个类的成员函数 TestBody(){...} 的函数体。
其次,掌握Setup,TearDown的调用时机;
然后,对各种判别宏有一定掌握,比如 EXPECT_EQ;
最后,掌握 TEST_P de 参数的各种形式的使用方式