大语言模型-GPT-Generative Pre-Training

news2024/9/23 6:23:25

一、背景信息:

GPT是2018 年 6 月由OpenAI 提出的预训练语言模型。
GPT可以应用于复杂的NLP任务中,例如文章生成,代码生成,机器翻译,问答对话等。
GPT也采用两阶段的训练过程,第一阶段是无监督的方式来预训练生成式的语言模型,第二阶段根据特定任务进行微调。
GPT的网络架构使用的是多层Transformer Decoder改的结构。

二、整体结构:

GPT 使用Transformer的 Decoder 结构,并进行了一些改动,GPT 中的Decoder只保留了原Decoder中的第一个Attention模块Mask Multi-Head Attention。

GPT堆叠了12个Transformer的Decoder模块作为解码器,然后通过全连接得到输出的概率分布。
GPT中采用的是单向的语言模型,即通过上文预测当前的词,而Decoder中的Masked Multi Self-Attention可以起到遮掩待预测的下文内容的效果。

GPT 处理不同任务时的输入变换

GPT模型由输入嵌入层多层Transformer Decoder以及输出层这三个部分组成。
其中
1、输入嵌入层: 将输入的文本序列转换为词向量、位置向量并将二者相加得到输入向量。
2、多层Transformer Decode: 其中每一层由以残差和的方式做LayerNorm的掩码多头自注意力机层与以残差和的方式做LayerNorm的双层前馈神经网络组成。
X o u t p u t = X o u p u t − o r i ⊗ X M a s k X = L a y d e r N o r m ( X o u t p u t + M a s k M u l t i H e a d A t t e n t i o n ( X o u p u t ) ) X = F e e d F o r w o r d ( X ) = m a x ( 0 , X W 1 + b 1 ) W 2 + b 2 \begin{matrix} \\X_{output}=X_{ouput-ori }\otimes X_{Mask} \\X = LayderNorm(X_{output} + MaskMultiHeadAttention(X_{ouput})) \\X = FeedForword(X) = max(0, XW_{1} + b_{1})W_{2} + b_{2}\begin{matrix}\end{matrix} \end{matrix} Xoutput=XouputoriXMaskX=LayderNorm(Xoutput+MaskMultiHeadAttention(Xouput))X=FeedForword(X)=max(0,XW1+b1)W2+b2
3、输出层: GPT模型的输出层通常为一个全连接层,将多层解码器的输出转换为对应的单词概率分布。

  • 分类任务(Classification):将起始和终止token加入到原始序列两端,输入transformer中得到特征向量,最后经过一个全连接得到预测的概率分布。
  • 自然语言推理(Entailment):将前提(premise)和假设(hypothesis)通过分隔符(Delimiter)隔开,两端加上起始和终止token。再依次通过Transformer多层Decoder和全连接得到预测结果。
  • 语义相似度(Similarity):输入的两个句子,正向和反向各拼接一次,然后分别输入给Transformer多层Decoder,得到的特征向量拼接后再送给全连接得到预测结果;
  • 多项选择(MutipleChoice):将n个选项的问题抽象化为n个二分类问题,即每个选项分别和内容进行拼接,然后各送入Transformer多层Decode和全连接中,最后选择置信度最高的作为预测结果。
    在这里插入图片描述

三、GPT训练

GPT的训练包含无监督预训练有监督fine-tune两个阶段。

GPT的无监督预训练:

假设未标注的词汇集合为 U = { u 1 , u 2 , . . . u n } U = \left \{ {{u_{1},u_{2},...u_{n}}}\right \} U={u1,u2,...un},GPT模型的优化目标是对参数进行最大似然估计:
L 1 ( U ) = ∑ i l o g P ( u i ∣ u 1 , . . . , u k − 1 ; Θ ) L_{1}(U) = \sum_{i}^{} log P(u_{i}|u_{1},...,u_{k-1};\Theta ) L1(U)=ilogP(uiu1,...,uk1;Θ)
其中,k是滑动窗口的大小, P 为条件概率, Θ \Theta Θ为条件概率的参数, 参数更新采用随机梯度下降(SGD)方法。
下面是整个过程的公式示例:
{ h 0 = U W e + W p h l = T r a n s f o r m e r D e c o d e r B l o c k ( h l − q ) P ( u ) = s o f t m a x ( h n W e T ) \left\{\begin{matrix}h_{0} = UW_{e} + W{p} \\h_{l} = TransformerDecoderBlock(h_{l-q}) \\P(u) = softmax(h_{n}W_{e}^{T} ) \end{matrix}\right. h0=UWe+Wphl=TransformerDecoderBlock(hlq)P(u)=softmax(hnWeT)

  1. 输入嵌入层: W e W_{e} We是token的词向量Embedding矩阵, W p W_{p} Wp是位置编码的Embedding矩阵,二者求和得到输入向量矩阵 h 0 h_{0} h0
  2. 多层Transformer Decode:TransformerDecoderBlock指多层Decoder模块
  3. 输出层:通过Softmax函数将输出的词向量转换为对应的单词概率分布

GPT的有监督fine-tune:

预训练后,需要针对特定任务进行有监督Fine-Tuning。
这里以一个文本分类任务举例,展示GPT在某一任务有监督微调的过程。
假设带标注的数据集C中的输入序列X为 [ x 1 , . . . , x m ] [x^{1},..., x^{m}] [x1,...,xm];模型的输出y是一个分类标签; h l m h_{l}^{m} hlm代表Decoder层最后的输出; W y W_{y} Wy代表输出层的Softmax参数。 L 2 ( C ) L_{2}(C) L2(C)是分类任务的最大似然函数, L 3 ( C ) L_{3}(C) L3(C)是整体的最大似然函数;GPT 在微调的时候需要同时考虑预训练的损失函数,因此微调的训练目标是最大化似然函数 L 3 ( C ) L_{3}(C) L3(C).
{ P ( y ∣ x 1 , . . . , x m ) = s o f t m a x ( h l m W y ) L 2 ( C ) = ∑ x , y l o g P ( y ∣ x 1 , . . . , x m ) L 3 ( C ) = L 2 ( C ) + λ × L 1 ( C ) \left\{\begin{matrix}P(y|x^{1},..., x^{m}) = softmax(h_{l}^{m}W_{y}) \\L_{2}(C) = \sum_{x,y}^{} log P(y|x^{1},..., x^{m}) \\L_{3}(C) = L_{2}(C) + \lambda \times L_{1}(C) \end{matrix}\right. P(yx1,...,xm)=softmax(hlmWy)L2(C)=x,ylogP(yx1,...,xm)L3(C)=L2(C)+λ×L1(C)

Reference

1.Attention Is All You Need
2.BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
3.Improving Language Understanding by Generative Pre-Training

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1942699.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

使用 Redis 实现验证码、token 的存储,用自定义拦截器完成用户认证、并使用双重拦截器解决 token 刷新的问题

基于session实现登录流程 1.发送验证码 用户在提交手机号后,会校验手机号是否合法,如果不合法,则要求用户重新输入手机号 如果手机号合法,后台此时生成对应的验证码,同时将验证码进行保存,然后再通过短信…

Python爬虫实战案例(爬取图片)

爬取图片的信息 爬取图片与爬取文本内容相似,只是需要加上图片的url,并且在查找图片位置的时候需要带上图片的属性。 这里选取了一个4K高清的壁纸网站(彼岸壁纸https://pic.netbian.com)进行爬取。 具体步骤如下: …

Android 性能之刷新率设置和管理

目录 1. 刷新率和帧率 2. 多种刷新率 3. 基本原理 3.1 屏幕 & 显示控制器 3.2 Composer Service 4. Framework 策略 4.1基本架构 4.2 刷新率设置项的定义 4.2.1 最低刷新率 4.2.2 默认刷新率 & 默认的用户设置刷新率 4.2.2.1 设置入口 4.2.2.2 设置场景 4…

Matlab画不同指标的对比图

目录 一、指标名字可修改 二、模型名字可修改 三、输入数据可修改 软件用的是Matlab R2024a。 clear,clc,close all figure1figure(1); % set(figure1,Position,[300,100,800,600],Color,[1 1 1]) axes1 axes(Parent,figure1);%% Initialize data points 一、指标名字可修…

zigbee DL-20无线串口模块(电赛备战)

zigbee DL-20无线串口模块(电赛备战) 备战2024电子设计大赛(7.29-8.1) 概述 DL-20是一款2.4G无线串口模块,支持点对点和广播模式的通信。它具备低数据丢失率、宽电压范围和高传输速率的特点,适用于多种无线通信场景。 在电赛中&…

百日筑基第二十八天-23种设计模式-行为型总汇

百日筑基第二十八天-23种设计模式-行为型总汇 文章目录 百日筑基第二十八天-23种设计模式-行为型总汇前言模板方法模式简介模板方式的特点模板方法模式结构类图模板方式模式案例分析模板方法模式应用源码分析模板方法模式的注意事项和细节 迭代器模式迭代器模式结构类图迭代器模…

googleTest 源码主线框架性分析

本文备忘一个主题的分析过程和结论,即,googleTest框架中是如何调用相关的测试宏的? TEST TEST_F TEST_P 等等 1,googleTest 环境与简单示例 1.1 下载 googletest 并编译 下载: $ git clone https://github.com/goog…

5 C 语言数组与字符串的全面解析

目录 1 数组的概念与特性 1.1 什么是数组 1.2 数组的特点 1.3 数组的用途 2 一维数组的定义与初始化 2.1 一维数组的定义 2.2 声明与定义的区别 2.3 一维数组的多种初始化 3 数组名的命名规则与作用 3.1 数组名的命名规则 3.2 数组名的作用 4 一维数组在内存中的存…

实战篇(十二):如何使用 Processing 创建一个多功能的简易吃豆人游戏

如何使用 Processing 创建一个多功能的简易吃豆人游戏 文章目录 如何使用 Processing 创建一个多功能的==简易==吃豆人游戏引言准备工作第一步:设置基本框架第二步:创建 Pacman 类第三步:创建 Obstacle 类第四步:添加分数系统第五步:运行游戏完整代码结论参考资料引言 吃…

Python基础知识——(005)

文章目录 P21——20. 比较运算符 P22——21. 逻辑运算符 P23——22. 位运算和运算符的优先级 P24——23. 本章总结和章节习题 P21——20. 比较运算符 示例3-17—比较运算符的使用: P22——21. 逻辑运算符 示例3-18—逻辑运算符的使用: print(True and T…

van-dialog 组件调用报错

报错截图 报错原因 这个警告表明 vue 在渲染页面时遇到了一个未知的自定义组件 <van-dialog>&#xff0c;并且提示可能是由于未正确注册该组件导致的。在 vue 中&#xff0c;当我们使用自定义组件时&#xff0c;需要先在 vue 实例中注册这些组件&#xff0c;以便 vue 能…

基于关键字驱动设计Web UI自动化测试框架!

引言 在自动化测试领域&#xff0c;关键字驱动测试&#xff08;Keyword-Driven Testing, KDT&#xff09;是一种高效且灵活的方法&#xff0c;它通过抽象测试用例中的操作为关键字&#xff0c;实现了测试用例与测试代码的分离&#xff0c;从而提高了测试脚本的可维护性和可扩展…

5.Fabric的共识机制

在Fabric中,有以下3中典型共识机制。 Solo共识 solo共识机制只能用于单节点模式,即只能有一个Orderer节点,因此,其共识过程很简单,每接收到一个交易信息,就在共识模块的控制下产生区块并广播给节点存储到账本中。 Solo 模式下的共识只适用于一个Orderer节点,所以可以在…

AI 驱动下的一体化分布式数据库:滴滴、快手、中国恩菲、好未来、翼鸥教育共话创新应用实践|OceanBase Meetup 精彩回顾

7月6日&#xff0c;OceanBase Meetup 北京站——“AI 驱动下的一体化分布式数据库&#xff1a;跨行业多场景的创新应用与实战”举办。来自滴滴、快手、中国恩菲、好未来、翼鸥教育、蚂蚁集团及OceanBase等众多行业技术专家与资深用户&#xff0c;围绕众多用户关注的AI 与数据库…

Performance Metrics in Evaluating Stable Diffusion Models

1.Performance Metrics in Evaluating Stable Diffusion Models 笔记来源&#xff1a; 1.Performance Metrics in Evaluating Stable Diffusion Models 2.Denoising Diffusion Probabilistic Models 3.A simple explanation of the Inception Score 4.What is the inception s…

【LLM】-05-提示工程-部署Langchain-Chat

目录 1、软硬件要求 1.1、软件要求 1.2、硬件要求 1.3、个人配置参考 2、创建cuda环境 3、下载源码及模型 4、配置文件修改 5、初始化知识库 5.1、训练自己的知识库 6、启动 7、API接口调用 7.1、使用openai 参考官方wiki&#xff0c;本文以Ubuntu20.04_x64&#xf…

揭秘!电源炼成记:从基础原理到高端设计的全面解析

文章目录 初始构想&#xff1a;需求驱动设计原理探索&#xff1a;选择适合的拓扑结构精细设计&#xff1a;元器件选型与布局环路稳定&#xff1a;控制策略与补偿网络严格测试&#xff1a;验证与优化持续改进&#xff1a;创新与技术迭代《硬件十万个为什么&#xff08;电源是怎样…

云计算实训11——web服务器的搭建、nfs服务器的搭建、备份静态文件、基于linux和windows实现文件共享

一、搭建web服务器 1.关闭firewall和selinux 关闭防火墙 systemctl stop firewalld systemctl disable firewalld 停用selinux setenforce 0 配置文件中让sellinux不再启动 vim /etc/selinux/config SELINUXpermissive 2.编辑dns配置文件 vim /etc/resolv.conf nameserver 114.…

Sql Server缓冲池、连接池等基本知识(附Demo)

目录 前言1. 缓存池2. 连接池3. 彩蛋 前言 基本的知识推荐阅读&#xff1a; java框架 零基础从入门到精通的学习路线 附开源项目面经等&#xff08;超全&#xff09;Mysql优化高级篇&#xff08;全&#xff09;Mysql底层原理详细剖析常见面试题&#xff08;全&#xff09; 1…

【深度学习入门篇 ⑪】自注意力机制

【&#x1f34a;易编橙&#xff1a;一个帮助编程小伙伴少走弯路的终身成长社群&#x1f34a;】 大家好&#xff0c;我是小森( &#xfe61;ˆoˆ&#xfe61; ) &#xff01; 易编橙终身成长社群创始团队嘉宾&#xff0c;橙似锦计划领衔成员、阿里云专家博主、腾讯云内容共创官…