rabbitmq生产与消费

news2024/11/13 8:37:34

一、rabbitmq发送消息

一、简单模式

概述

     一个生产者一个消费者

模型

在这里插入图片描述

代码

//没有交换机,两个参数为routingKey和消息内容
rabbitTemplate.convertAndSend("test1_Queue","haha");

二、工作队列模式

概述

  一个生产者,多个消费者,消费者之间负载均衡

模型

在这里插入图片描述

代码

	//没有交换机,两个参数为routingKey和消息内容
    rabbitTemplate.convertAndSend("test1_Queue","haha");

三、发布订阅模式

概述

生产者把消息给交换机,交换机把消息推送给与它绑定的所有队列,消费者监听自己的队列

模型

在这里插入图片描述

代码

//该模式下,交换机与队列绑定无需routingkey,因此效率最高
rabbitTemplate.convertAndSend("fanout_Exchange","","lala");

四、路由模式

概述

交换机与队列由routing key绑定,生产者发送消息时指定交换机和routing key,则对应的队列便会收到消息

模型

在这里插入图片描述

代码

 rabbitTemplate.convertAndSend("direct_Exchange","test1_Queue","lala");

五、主题模式(通配符模式)

概述

交换机与队列由routing key绑定,但routing key由通配符和具体的字符组成,生产者输入具体的字符,交换机根据routing key的规则模糊匹配到对应的队列,则对应的队列会收到消息

模型

在这里插入图片描述

代码

/**
 * 交换机与队列绑定
 * @return
 */
@Bean
Binding truckHistoryBinding(){
    return BindingBuilder.bind(test1Queue()).to(topicExchange()).with("*.test1.*");
}


@GetMapping("/sendMessage")
public void sendMessage() {
	//需要字符串的模糊匹配,效率最低
    rabbitTemplate.convertAndSend("topic_Exchange","aa.test1.cc","lala");
}

二、rabbitmq接收消息

一、拉模式

概述

 消费者可以主动拉取队列里的消息

代码

rabbitTemplate.execute(channel->{
    //通过channel.basicGet方法可以单条获取消息,其返回值时GetReponse
    GetResponse response =  channel.basicGet("my_queue",false);
    String message = new String(response.getBody());
  }
)

二、推模式

概述

通过发布订阅模式,订阅队列里的消息

代码

 @RabbitListener(queues="my_queue")
 public void onMessage(Message messge,Channel channel){
    String msg = new String (message.getBody());
 }

三、消息的手动确认

注意:

手动确认需要先将自动确认的配置注释掉;
消息确认模式有:
AcknowledgeMode.NONE:自动确认
AcknowledgeMode.AUTO:根据情况确认
AcknowledgeMode.MANUAL:手动确认
默认情况下消息消费者是自动 ack (确认)消息的,如果要手动 ack(确认)则需要修改确认模式为 manual

spring:
  rabbitmq:
    listener:
      simple:
        acknowledge-mode: manual

或在 RabbitListenerContainerFactory 中进行开启手动 ack

@Bean
public RabbitListenerContainerFactory<?> rabbitListenerContainerFactory(ConnectionFactory connectionFactory){
    SimpleRabbitListenerContainerFactory factory = new SimpleRabbitListenerContainerFactory();
    factory.setConnectionFactory(connectionFactory);
    factory.setMessageConverter(new Jackson2JsonMessageConverter());
    factory.setAcknowledgeMode(AcknowledgeMode.MANUAL);             //开启手动 ack
    return factory;
}

消费消息手动确认的监听器

获取消息消费的唯一标识

message.getMessageProperties().getDeliveryTag();

执行业务处理

消息确认

  //消费消息的手动确认,消息确认成功-basicAck
  //第一个参数deliveryTag,消息的唯一标识
  //第二个参数multiple,消息是否支持批量确认,如果是true,代表可以一次性确认标识小于等于当前标识的所有消息
  //如果是false,只会确认当前消息
   channel.basicAck(deliveryTag,false);

消息确认失败处理,根据条件判断设置是否重回队列 ,是否支持批量处理

  			//说明消费消息处理失败,如果不进行确认(自动确认,投递成功即确认,消费是否正常,不关心),消息就会丢失
            //消息处理失败确认,代表消息没有正确消费,注意:此种方式一次只能确认一个消息
            //第一给参数是消息的唯一标识,
            //第二个参数是代表是否重回队列,如果是true,重新将该消息放入队列,再次消费
            //注意:第二个参数要谨慎,必须要结合具体业务场景,根据业务判断是否需要重回队列,一旦处理不当,机会导致消息循环入队,消息挤压
            //不重回队列 require = false
//            channel.basicReject(deliveryTag,false);
            //重回队列 require = true
            channel.basicReject(deliveryTag,true);

            //消息处理失败确认,代表消息没有正确消费,注意,此种方式支持批量
            //第一个参数是消息的唯一标识,
            //第二个参数是代表是否支持批量确认
            //第三给参数代表是否重回队列
            //不重回队列 require = false
           channel.basicNack(deliveryTag,true,false);
            //重回队列 require = true
           channel.basicNack(deliveryTag,false,true);

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1942378.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C4D2024软件下载+自学C4D 从入门到精通【学习视频教程全集】+【素材笔记】

软件介绍与下载&#xff1a; 链接&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1n8cripcv6ZTx4TBNj5N04g?pwdhfg5 提取码&#xff1a;hfg5 基础命令的讲解&#xff1a; 掌握软件界面和基础操作界面。学习常用的基础命令&#xff0c;如建模、材质、灯光、摄像机…

设计模式-领域逻辑模式-结构映射模式

对象和关系之间的映射&#xff0c;关键问题在于二者处理连接的方式不同。 表现出两个问题&#xff1a; 表现方法不同。对象是通过在运行时&#xff08;内存管理环境或内存地址&#xff09;中保存引用的方式来处理连接的&#xff0c;关系数据库则通过创建到另外一个表的键值来处…

昇思25天学习打卡营第19天|munger85

Diffusion扩散模型 它并没有那么复杂&#xff0c;它们都将噪声从一些简单分布转换为数据样本&#xff0c;Diffusion也是从纯噪声开始通过一个神经网络学习逐步去噪&#xff0c;最终得到一个实际图像 def rearrange(head, inputs): b, hc, x, y inputs.shape c hc // head r…

大数据平台之HBase

HBase是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统&#xff0c;是Apache Hadoop生态系统的重要组成部分。它特别适合大规模结构化和半结构化数据的存储和检索&#xff0c;能够处理实时读写和批处理工作负载。以下是对HBase的详细介绍。 1. 核心概念 1.1 表&#x…

TIA博途V19无法勾选来自远程对象的PUT/GET访问的解决办法

TIA博途V19无法勾选来自远程对象的PUT/GET访问的解决办法 TIA博途升级到V19之后,1500CPU也升级到了V3.1的固件,1200CPU升级到了V4.6.1的固件, 固件升级之后,又出现了很多问题,如下图所示,在组态的时候会多出一些东西, 添加CPU之后,在属性界面可以看到“允许来自远程对象…

第二讲:NJ网络配置

Ethernet/IP网络拓扑结构 一. NJ EtherNet/IP 1、网络端口位置 NJ的CPU上面有两个RJ45的网络接口,其中一个是EtherNet/IP网络端口(另一个是EtherCAT的网络端口) 2、网络作用 如图所示,EtherNet/IP网络既可以做控制器与控制器之间的通信,也可以实现与上位机系统的对接通…

python爬虫基础——Webbot库介绍

本文档面向对自动化网页交互、数据抓取和网络自动化任务感兴趣的Python开发者。无论你是初学者还是有经验的开发者&#xff0c;Webbot库都能为你的自动化项目提供强大的支持。 Webbot库概述 Webbot是一个专为Python设计的库&#xff0c;用于简化网页自动化任务。它基于Seleniu…

高速ADC模拟输入接口设计

目录 基本输入接口考虑 输入阻抗 输入驱动 带宽和通带平坦度 噪声 失真 变压器耦合前端 有源耦合前端网络 基本输入接口考虑 采用高输入频率、高速模数转换器(ADC)的系统设计是一 项具挑战性的任务。ADC输入接口设计有6个主要条件&#xff1a; 输入阻抗、输入驱动、带宽…

【RaspberryPi】树莓派系统UI优化

接上文&#xff0c;如何去定制一个树莓派的桌面系统&#xff0c;还是以CM4为例。 解除CM4上电USB无法使用问题 将烧录好的tf卡通过读卡器插入到电脑上&#xff0c;进入boot磁盘&#xff0c;里面有一个Config文件&#xff0c;双击用记事本打开&#xff0c;在【pi4】一栏里加入一…

农业农村大数据底座:实现智慧农业的关键功能

随着信息技术的快速发展&#xff0c;农业领域也在逐步实现数字化转型。农业农村大数据底座作为支持智慧农业发展的重要基础设施&#xff0c;承载了多种关键功能&#xff0c;为农业生产、管理和决策提供了前所未有的支持和可能性。 ### 1. 数据采集与监测 农业农村大数据底座首…

【k8s故障处理篇】calico-kube-controllers状态为“ImagePullBackOff”解决办法

【k8s故障处理篇】calico-kube-controllers状态为“ImagePullBackOff”解决办法 一、环境介绍1.1 本次环境规划1.2 kubernetes简介1.3 kubernetes特点二、本次实践介绍2.1 本次实践介绍2.2 报错场景三、查看报错日志3.1 查看pod描述信息3.2 查看pod日志四、报错分析五、故障处理…

【Docker】Docker Desktop - WSL update failed

问题描述 Windows上安装完成docker desktop之后&#xff0c;第一次启动失败&#xff0c;提示&#xff1a;WSL update failed 解决方案 打开Windows PowerShell 手动执行&#xff1a; wsl --set-default-version 2 wsl --update

使用C#手搓Word插件

WordTools主要功能介绍 编码语言&#xff1a;C#【VSTO】 1、选择 1.1、表格 作用&#xff1a;全选文档中的表格&#xff1b; 1.2、表头 作用&#xff1a;全选文档所有表格的表头【第一行】&#xff1b; 1.3、表正文 全选文档中所有表格的除表头部分【除第一行部分】 1.…

便携式自动气象站:科技赋能气象观测

便携式自动气象站&#xff0c;顾名思义&#xff0c;就是一款集成了多种气象传感器&#xff0c;能够自动进行气象观测和数据记录的设备。它体积小巧、重量轻&#xff0c;便于携带和快速部署&#xff0c;可以在各种环境下进行气象数据的实时监测。同时&#xff0c;通过内置的无线…

Flex布局中元素主轴上平均分布 多余的向左对齐

content&#xff1a;父元素 content-item: 子元素 主轴上子元素平均分布 .content {display: flex;flex-wrap: wrap;justify-content: space-between;.service-item {display: flex;flex-direction: column;justify-content: center;align-items: center;width: 80px;height:…

万字长文之分库分表里无分库分表键如何查询【后端面试题 | 中间件 | 数据库 | MySQL | 分库分表 | 其他查询】

在很多业务里&#xff0c;分库分表键都是根据主要查询筛选出来的&#xff0c;那么不怎么重要的查询怎么解决呢&#xff1f; 比如电商场景下&#xff0c;订单都是按照买家ID来分库分表的&#xff0c;那么商家该怎么查找订单呢&#xff1f;或是买家找客服&#xff0c;客服要找到对…

ubuntu一些好用的开发工具及其配置

1 终端模糊搜索fzf https://github.com/junegunn/fzf 输入某命令&#xff0c;比如 conda &#xff0c;按下ctrlR&#xff0c;会显示和该命令匹配的历史命令的列表 有了这个工具再也不用记忆太复杂的命令&#xff0c;只需要知道大概几个单词&#xff0c;输入即可搜索。 其搜索…

SSD基本架构与工作原理

SSD的核心由一个或多核心的CPU控制器、DRAM缓存以及多个NAND闪存芯片组成。CPU控制器负责管理所有读写操作&#xff0c;并通过DRAM缓存存储映射表等元数据&#xff0c;以加速寻址过程。 NAND闪存则是数据存储的实际介质&#xff0c;其组织结构从大到小依次为通道&#xff08;包…

C++实现LRU缓存(新手入门详解)

LRU的概念 LRU&#xff08;Least Recently Used&#xff0c;最近最少使用&#xff09;是一种常用的缓存淘汰策略&#xff0c;主要目的是在缓存空间有限的情况下&#xff0c;优先淘汰那些最长时间没有被访问的数据项。LRU 策略的核心思想是&#xff1a; 缓存空间有限&#xff1…

航片转GIS数据自动化管线

近年来&#xff0c;计算机视觉领域的进步已显著改善了物体检测和分割任务。一种流行的方法是 YOLO&#xff08;You Only Look Once&#xff09;系列模型。YOLOv8 是 YOLO 架构的演进&#xff0c;兼具准确性和效率&#xff0c;是各种应用的绝佳选择&#xff0c;包括分割卫星航拍…