深入理解 Linux Zero-copy 原理与实现策略图解

news2024/12/24 8:29:05

用户态和内核态

一般来说,我们在编写程序操作 Linux I/O 之时十有八九是在用户空间和内核空间之间传输数据,因此有必要先了解一下 Linux 的用户态和内核态的概念。

在这里插入图片描述
从宏观上来看,Linux 操作系统的体系架构分为用户态和内核态(或者用户空间和内核)。内核从本质上看是一种软件 —— 控制计算机的硬件资源,并提供上层应用程序 (进程) 运行的环境。用户态即上层应用程序 (进程) 的运行空间,应用程序 (进程) 的执行必须依托于内核提供的资源,这其中包括但不限于 CPU 资源、存储资源、I/O 资源等等。

现代操作系统都是采用虚拟存储器,那么对 32 位操作系统而言,它的寻址空间(虚拟存储空间)为 2^32 B = 4G。操作系统的核心是内核,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的所有权限。

为了保证用户进程不能直接操作内核(kernel),保证内核的安全,操心系统将虚拟空间划分为两部分,一部分为内核空间,一部分为用户空间。针对 Linux 操作系统而言,将最高的 1G 字节(从虚拟地址 0xC0000000 到 0xFFFFFFFF),供内核使用,称为内核空间,而将较低的 3G 字节(从虚拟地址 0x00000000 到 0xBFFFFFFF),供各个进程使用,称为用户空间。

因为操作系统的资源是有限的,如果访问资源的操作过多,必然会消耗过多的系统资源,而且如果不对这些操作加以区分,很可能造成资源访问的冲突。所以,为了减少有限资源的访问和使用冲突,Unix/Linux 的设计哲学之一就是:对不同的操作赋予不同的执行等级,与系统相关的一些特别关键的操作必须由最高特权的程序来完成。

很多程序开始时运行于用户态,但在执行的过程中,一些操作需要在内核权限下才能执行,这就涉及到一个从用户态切换到内核态的过程。比如 C 函数库中的内存分配函数 malloc(),它具体是使用 sbrk() 系统调用来分配内存,当 malloc 调用 sbrk() 的时候就涉及一次从用户态到内核态的切换,类似的函数还有 printf(),调用的是 wirte() 系统调用来输出字符串,等等。

用户进程在系统中运行时,大部分时间是处在用户态空间里的,在其需要操作系统帮助完成一些用户态没有特权和能力完成的操作时就需要切换到内核态。

那么用户进程如何切换到内核态去使用那些内核资源呢?

  1. 系统调用(trap)
  2. 异常(exception)
  3. 中断(interrupt)

系统调用:用户进程主动发起的操作。用户态进程发起系统调用主动要求切换到内核态,陷入内核之后,由操作系统来操作系统资源,完成之后再返回到进程。

异常:被动的操作,且用户进程无法预测其发生的时机。当用户进程在运行期间发生了异常(比如某条指令出了问题),这时会触发由当前运行进程切换到处理此异常的内核相关进程中,也即是切换到了内核态。异常包括程序运算引起的各种错误如除 0、缓冲区溢出、缺页等。

中断:当外围设备完成用户请求的操作后,会向 CPU 发出相应的中断信号,这时 CPU 会暂停执行下一条即将要执行的指令而转到与中断信号对应的处理程序去执行,如果前面执行的指令是用户态下的程序,那么转换的过程自然就会是从用户态到内核态的切换。中断包括 I/O 中断、外部信号中断、各种定时器引起的时钟中断等。中断和异常类似,都是通过中断向量表来找到相应的处理程序进行处理。区别在于,中断来自处理器外部,不是由任何一条专门的指令造成,而异常是执行当前指令的结果。

通过上面的分析,可以得出 Linux 的内部层级可分为三大部分:

  1. 用户空间
  2. 内核空间
  3. 硬件

在这里插入图片描述

Linux I/O模式

程序控制 I/O

这是最简单的一种 I/O 模式,也叫忙等待或者轮询:用户通过发起一个系统调用,陷入内核态,内核将系统调用翻译成一个对应设备驱动程序的过程调用,接着设备驱动程序会启动 I/O 不断循环去检查该设备,看看是否已经就绪,一般通过返回码来表示,I/O 结束之后,设备驱动程序会把数据送到指定的地方并返回,切回用户态。

比如发起系统调用 read():

在这里插入图片描述

中断驱动 I/O

在这里插入图片描述

用户进程发起一个 read() 系统调用读取磁盘文件,陷入内核态并由其所在的 CPU 通过设备驱动程序向设备寄存器写入一个通知信号,告知设备控制器 (我们这里是磁盘控制器)要读取数据。

磁盘控制器启动磁盘读取的过程,把数据从磁盘拷贝到磁盘控制器缓冲区里。

完成拷贝之后磁盘控制器会通过总线发送一个中断信号到中断控制器,如果此时中断控制器手头还有正在处理的中断或者有一个和该中断信号同时到达的更高优先级的中断,则这个中断信号将被忽略,而磁盘控制器会在后面持续发送中断信号直至中断控制器受理。

中断控制器收到磁盘控制器的中断信号之后会通过地址总线存入一个磁盘设备的编号,表示这次中断需要关注的设备是磁盘。

中断控制器向 CPU 置起一个磁盘中断信号。

CPU 收到中断信号之后停止当前的工作,把当前的 PC/PSW 等寄存器压入堆栈保存现场,然后从地址总线取出设备编号,通过编号找到中断向量所包含的中断服务的入口地址,压入 PC 寄存器,开始运行磁盘中断服务,把数据从磁盘控制器的缓冲区拷贝到主存里的内核缓冲区。

最后 CPU 再把数据从内核缓冲区拷贝到用户缓冲区,完成读取操作,read() 返回,切换回用户态。

DMA I/O

前面的中断驱动 I/O 模式的流程,可以发现CPU 收到中断信号之后的数据拷贝工作都是由 CPU 亲自完成的,也就是在这两次数据拷贝阶段中 CPU 是完全被占用而不能处理其他工作的,那么这里明显是有优化空间的。

最后的数据拷贝是从内核缓冲区到用户缓冲区,都是在主存里,所以这一步只能由 CPU 亲自完成,但是之前的数据拷贝,是从磁盘控制器的缓冲区到主存,是两个设备之间的数据传输,这一步并非一定要 CPU 来完成,可以借助 DMA 来完成,减轻 CPU 的负担。

DMA 全称是 Direct Memory Access,也即直接存储器存取,是一种用来提供在外设和存储器之间或者存储器和存储器之间的高速数据传输。整个过程无须 CPU 参与,数据直接通过 DMA 控制器进行快速地移动拷贝,节省 CPU 的资源去做其他工作。

DMA 控制器内部包含若干个可以被 CPU 读写的寄存器:一个主存地址寄存器 MAR(存放要交换数据的主存地址)、一个外设地址寄存器 ADR(存放 I/O 设备的设备码,或者是设备信息存储区的寻址信息)、一个字节数寄存器 WC(对传送数据的总字数进行统计)、和一个或多个控制寄存器。

在这里插入图片描述

用户进程发起一个 read() 系统调用读取磁盘文件,陷入内核态并由其所在的 CPU 通过设置 DMA 控制器的寄存器:把内核缓冲区和磁盘文件的地址分别写入 MAR 和 ADR 寄存器,然后把期望读取的字节数写入 WC 寄存器,启动 DMA 控制器。

DMA 控制器根据 ADR 寄存器里的信息知道这次 I/O 需要读取的外设是磁盘的某个地址,便向磁盘控制器发出一个命令,通知它从磁盘读取数据到其内部的缓冲区里。

磁盘控制器启动磁盘读取的过程,把数据从磁盘拷贝到磁盘控制器缓冲区里,并对缓冲区内数据的校验和进行检验,如果数据是有效的,那么 DMA 就可以开始了。

DMA 控制器通过总线向磁盘控制器发出一个读请求信号从而发起 DMA 传输,这个信号和前面的中断驱动 I/O 小节里 CPU 发给磁盘控制器的读请求是一样的,它并不知道或者并不关心这个读请求是来自 CPU 还是 DMA 控制器。

紧接着 DMA 控制器将引导磁盘控制器将数据传输到 MAR 寄存器里的地址,也就是内核缓冲区。

数据传输完成之后,返回一个 ack 给 DMA 控制器,WC 寄存器里的值会减去相应的数据长度,如果 WC 还不为 0,则重复发出一个读请求信号,一直到 WC 里的字节数等于 0。

收到 ack 信号的 DMA 控制器会通过总线发送一个中断信号到中断控制器,如果此时中断控制器手头还有正在处理的中断或者有一个和该中断信号同时到达的更高优先级的中断,则这个中断信号将被忽略,而 DMA 控制器会在后面持续发送中断信号直至中断控制器受理。

中断控制器收到磁盘控制器的中断信号之后会通过地址总线存入一个主存设备的编号,表示这次中断需要关注的设备是主存。

中断控制器向 CPU 置起一个 DMA 中断的信号。

CPU 收到中断信号之后停止当前的工作,把当前的 PC/PSW 等寄存器压入堆栈保存现场,然后从地址总线取出设备编号,通过编号找到中断向量所包含的中断服务的入口地址,压入 PC 寄存器,开始运行 DMA 中断服务,把数据从内核缓冲区拷贝到用户缓冲区,完成读取操作,read() 返回,切换回用户态。

传统 I/O 读写模式

Linux 中传统的 I/O 读写是通过 read()/write() 系统调用完成的,read() 把数据从存储器 (磁盘、网卡等) 读取到用户缓冲区,write() 则是把数据从用户缓冲区写出到存储器。

#include <unistd.h>
 
ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);

在这里插入图片描述
可以清楚看到这里一共触发了 4 次用户态和内核态的上下文切换,分别是 read()/write() 调用和返回时的切换,2 次 DMA 拷贝,2 次 CPU 拷贝,加起来一共 4 次拷贝操作。

通过引入 DMA,我们已经把 Linux 的 I/O 过程中的 CPU 拷贝次数从 4 次减少到了 2 次,但是 CPU 拷贝依然是代价很大的操作,对系统性能的影响还是很大,特别是那些频繁 I/O 的场景,更是会因为 CPU 拷贝而损失掉很多性能,我们需要进一步优化,降低、甚至是完全避免 CPU 拷贝。

零拷贝 (Zero-copy)

零拷贝技术是指计算机执行操作时,CPU不需要先将数据从某处内存复制到另一个特定区域。这种技术通常用于通过网络传输文件时节省CPU周期和内存带宽。

从 zero-copy 这个概念被提出以来,相关的实现技术便犹如雨后春笋,层出不穷。但是截至目前为止,并没有任何一种 zero-copy 技术能满足所有的场景需求。

而在 Linux 平台上,同样也有很多的 zero-copy 技术,新旧各不同,可能存在于不同的内核版本里,很多技术可能有了很大的改进或者被更新的实现方式所替代,这些不同的实现技术按照其核心思想可以归纳成大致的以下三类:

  • 减少甚至避免用户空间和内核空间之间的数据拷贝: 在一些场景下,用户进程在数据传输过程中并不需要对数据进行访问和处理,那么数据在 Linux 的 Page Cache 和用户进程的缓冲区之间的传输就完全可以避免,让数据拷贝完全在内核里进行。这一类实现一般是通过增加新的系统调用来完成的,比如 Linux 中的 mmap(),sendfile() 以及 splice() 等。
  • 绕过内核的直接 I/O: 允许在用户态进程绕过内核直接和硬件进行数据传输,内核在传输过程中只负责一些管理和辅助的工作。这种方式其实和第一种有点类似,也是试图避免用户空间和内核空间之间的数据传输,只是第一种方式是把数据传输过程放在内核态完成,而这种方式则是直接绕过内核和硬件通信,效果类似但原理完全不同。
  • 内核缓冲区和用户缓冲区之间的传输优化: 这种方式侧重于在用户进程的缓冲区和操作系统的页缓存之间的 CPU 拷贝的优化。这种方法延续了以往那种传统的通信方式,但更灵活。

以下重点介绍减少甚至避免用户空间和内核空间之间的数据拷贝的操作方法

mmap

#include <sys/mman.h>
 
void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset);
int munmap(void *addr, size_t length);

一种简单的实现方案是在一次读写过程中用 Linux 的另一个系统调用 mmap() 替换原先的 read(),mmap() 也即是内存映射(memory map):把用户进程空间的一段内存缓冲区(user buffer)映射到文件所在的内核缓冲区(kernel buffer)上。

在这里插入图片描述
利用 mmap() 替换 read(),配合 write() 调用的整个流程如下:

  • 用户进程调用 mmap(),从用户态陷入内核态,将内核缓冲区映射到用户缓存区。
  • DMA 控制器将数据从硬盘拷贝到内核缓冲区。
  • mmap() 返回,上下文从内核态切换回用户态。
  • 用户进程调用 write(),尝试把文件数据写到内核里的套接字缓冲区,再次陷入内核态。
  • CPU 将内核缓冲区中的数据拷贝到的套接字缓冲区。
  • DMA 控制器将数据从套接字缓冲区拷贝到网卡完成数据传输。
  • write() 返回,上下文从内核态切换回用户态。

通过这种方式,有两个优点:一是节省内存空间,因为用户进程上的这一段内存是虚拟的,并不真正占据物理内存,只是映射到文件所在的内核缓冲区上,因此可以节省一半的内存占用。二是省去了一次 CPU 拷贝,对比传统的 Linux I/O 读写,数据不需要再经过用户进程进行转发了,而是直接在内核里就完成了拷贝。所以使用 mmap() 之后的拷贝次数是 2 次 DMA 拷贝,1 次 CPU 拷贝,加起来一共 3 次拷贝操作,比传统的 I/O 方式节省了一次 CPU 拷贝以及一半的内存,不过因为 mmap() 也是一个系统调用,因此用户态和内核态的切换还是 4 次。

mmap() 因为既节省 CPU 拷贝次数又节省内存,所以比较适合大文件传输的场景。虽然 mmap() 完全是符合 POSIX 标准的,但是它也不是完美的,因为它并不总是能达到理想的数据传输性能。

首先是因为数据数据传输过程中依然需要一次 CPU 拷贝,其次是内存映射技术是一个开销很大的虚拟存储操作:这种操作需要修改页表以及用内核缓冲区里的文件数据汰换掉当前 TLB 里的缓存以维持虚拟内存映射的一致性。但是内存映射通常针对的是相对较大的数据区域,所以对于相同大小的数据来说,内存映射所带来的开销远远低于 CPU 拷贝所带来的开销。

使用 mmap() 还可能会遇到一些需要值得关注的特殊情况,例如,在 mmap() --> write() 这两个系统调用的整个传输过程中,如果有其他的进程突然截断了这个文件,那么这时用户进程就会因为访问非法地址而被一个从总线传来的 SIGBUS 中断信号杀死并且产生一个 core dump。

有两种解决办法:

  1. 为SIGBUS信号建立信号处理程序
    当遇到SIGBUS信号时,信号处理程序简单地返回,write系统调用在被中断之前会返回已经写入的字节数,并且errno会被设置成success,但是这是一种糟糕的处理办法,因为你并没有解决问题的实质核心。
  2. 使用文件租借锁
    通常我们使用这种方法,在文件描述符上使用租借锁,我们为文件向内核申请一个租借锁,当其它进程想要截断这个文件时,内核会向我们发送一个实时的RT_SIGNAL_LEASE信号,告诉我们内核正在破坏你加持在文件上的读写锁。这样在程序访问非法内存并且被SIGBUS杀死之前,你的write系统调用会被中断。write会返回已经写入的字节数,并且置errno为success。

sendfile

在 Linux 内核 2.1 版本中,引入了一个新的系统调用 sendfile():

#include <sys/sendfile.h>
 
ssize_t sendfile(int out_fd, int in_fd, off_t *offset, size_t count);

系统调用sendfile()在代表输入文件的描述符in_fd和代表输出文件的描述符out_fd之间传送文件内容(字节)。描述符out_fd必须指向一个套接字,而in_fd指向的文件必须是可以mmap的。这些局限限制了sendfile的使用,使sendfile只能将数据从文件传递到套接字上,反之则不行。

使用sendfile不仅减少了数据拷贝的次数,还减少了上下文切换,数据传送始终只发生在kernel space

在这里插入图片描述
使用 sendfile() 完成一次数据读写的流程如下:

  • 用户进程调用 sendfile() 从用户态陷入内核态。
  • DMA 控制器将数据从硬盘拷贝到内核缓冲区。
  • CPU 将内核缓冲区中的数据拷贝到套接字缓冲区。
  • DMA 控制器将数据从套接字缓冲区拷贝到网卡完成数据传输。
  • sendfile() 返回,上下文从内核态切换回用户态。

基于 sendfile(), 整个数据传输过程中共发生 2 次 DMA 拷贝和 1 次 CPU 拷贝,这个和 mmap() + write() 相同,但是因为 sendfile() 只是一次系统调用,因此比前者少了一次用户态和内核态的上下文切换开销。

sendfile() 相较于 mmap() 的另一个优势在于数据在传输过程中始终没有越过用户态和内核态的边界,因此极大地减少了存储管理的开销。即便如此,sendfile() 依然是一个适用性很窄的技术,最适合的场景基本也就是一个静态文件服务器了。

然而 sendfile() 本身是有很大问题的,从不同的角度来看的话主要是:

  • 这个接口并没有进行标准化,导致 sendfile() 在 Linux 上的接口实现和其他类 Unix 系统的实现并不相同。
  • 由于网络传输的异步性,很难在接收端实现和 sendfile() 对接的技术,因此接收端一直没有实现对应的这种技术;
  • 因为 sendfile() 在把磁盘文件从内核缓冲区(page cache)传输到到套接字缓冲区的过程中依然需要 CPU 参与,这就很难避免 CPU 的高速缓存被传输的数据所污染。

sendfile with DMA Scatter/Gather Copy

通过引入一个新硬件上的支持,可以把这个仅剩的一次 CPU 拷贝也给抹掉:Linux 在内核 2.4 版本里引入了 DMA 的 scatter/gather – 分散/收集功能,并修改了 sendfile() 的代码使之和 DMA 适配。scatter 使得 DMA 拷贝可以不再需要把数据存储在一片连续的内存空间上,而是允许离散存储,gather 则能够让 DMA 控制器根据少量的元信息:一个包含了内存地址和数据大小的缓冲区描述符,收集存储在各处的数据,最终还原成一个完整的网络包,直接拷贝到网卡而非套接字缓冲区,避免了最后一次的 CPU 拷贝:

在这里插入图片描述

splice

splice(),它在功能上和 sendfile() 非常相似,但是能够实现在任意类型的两个文件描述符时之间传输数据;而在底层实现上,splice()又比 sendfile() 少了一次 CPU 拷贝,也就是等同于 sendfile() + DMA Scatter/Gather,完全去除了数据传输过程中的 CPU 拷贝。

#include <fcntl.h>
#include <unistd.h>
 
int pipe(int pipefd[2]);
int pipe2(int pipefd[2], int flags);
 
ssize_t splice(int fd_in, loff_t *off_in, int fd_out, loff_t *off_out, size_t len, unsigned int flags);

在这里插入图片描述

splice调用在两个文件描述符之间移动数据,而不需要数据在内核空间和用户空间来回拷贝。他从fd_in拷贝len长度的数据到fd_out,但是有一方必须是管道设备,这也是目前splice的一些局限性。flags参数有以下几种取值:

  • SPLICE_F_MOVE :尝试去移动数据而不是拷贝数据。这仅仅是对内核的一个小提示:如果内核不能从pipe移动数据或者pipe的缓存不是一个整页面,仍然需要拷贝数据。Linux最初的实现有些问题,所以从2.6.21开始这个选项不起作用,后面的Linux版本应该会实现。
  • SPLICE_F_NONBLOCK: splice 操作不会被阻塞。然而,如果文件描述符没有被设置为不可被阻塞方式的 I/O ,那么调用 splice 有可能仍然被阻塞。
  • SPLICE_F_MORE: 后面的splice调用会有更多的数据。

splice调用利用了Linux提出的管道缓冲区机制, 所以至少一个描述符要为管道。 其是基于 pipe buffer 实现的,但是它在通过管道传输数据的时候却是零拷贝,因为它在写入读出时并没有使用 pipe_write()/pipe_read() 真正地在管道缓冲区写入读出数据,而是通过把数据在内存缓冲区中的物理内存页框指针、偏移量和长度赋值给前文提及的 pipe_buffer 中对应的三个字段来完成数据的"拷贝",也就是其实只拷贝了数据的内存地址等元信息。

以上几种零拷贝技术都是减少数据在用户空间和内核空间拷贝技术实现的,但是有些时候,数据必须在用户空间和内核空间之间拷贝。这时候,我们只能针对数据在用户空间和内核空间拷贝的时机上下功夫了。Linux通常利用**写时复制(copy on write)**来减少系统开销,这个技术又时常称作COW

由于篇幅原因,本文不详细介绍写时复制。大概描述下就是:如果多个程序同时访问同一块数据,那么每个程序都拥有指向这块数据的指针,在每个程序看来,自己都是独立拥有这块数据的,只有当程序需要对数据内容进行修改时,才会把数据内容拷贝到程序自己的应用空间里去,这时候,数据才成为该程序的私有数据。如果程序不需要对数据进行修改,那么永远都不需要拷贝数据到自己的应用空间里。这样就减少了数据的拷贝。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1940633.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

昇思25天学习打卡营第24天|ResNet50迁移学习

课程打卡凭证 迁移学习 迁移学习是机器学习中一个重要的技术&#xff0c;通过在一个任务上训练的模型来改善在另一个相关任务上的表现。在深度学习中&#xff0c;迁移学习通常涉及在一个大型数据集&#xff08;如ImageNet&#xff09;上预训练的模型上进行微调&#xff0c;以便…

设计模式之策略模式_入门

前言 最近接触了优惠券相关的业务&#xff0c;如果是以前&#xff0c;我第一时间想到的就是if_else开始套&#xff0c;这样的话耦合度太高了&#xff0c;如果后期添加或者删除优惠券&#xff0c;必须直接修改业务代码&#xff0c;不符合开闭原则&#xff0c;这时候就可以选择我…

vue3.0学习笔记(一)——vue3简介与vite脚手架的使用

1. 为什么学vue3 Vue3现状&#xff1a; vue-next 2020年09月18日&#xff0c;正式发布vue3.0版本。但是由于刚发布周边生态不支持&#xff0c;大多数开发者处于观望。现在主流组件库都已经发布了支持vue3.0的版本&#xff0c;其他生态也在不断地完善中&#xff0c;这是趋势。…

Python | Leetcode Python题解之第268题丢失的数字

题目&#xff1a; 题解&#xff1a; class Solution:def missingNumber(self, nums: List[int]) -> int:n len(nums)total n * (n 1) // 2arrSum sum(nums)return total - arrSum

Qt第十三章 目录和文件操作

目录和文件操作 文章目录 目录和文件操作设备I/O简介I/O设备的类型基本文件读写QFileQTemporaryFile 流操作QTextStreamQDataStream QFileInfoQDirQFileSystemWatcherQStandardPathsQSettings 设备I/O 简介 I/O设备的类型 基本文件读写 QFile QFile file("C:/Users/PV…

Cisco 路由重发布 —— 实现路由信息在不同路由域间的传递

一、技术背景 在实际的组网中&#xff0c;可能会遇到这样一个场景&#xff1a;在一个网络中同时存在两种或者两种以上的路由协议。例如客户的网络原先是纯 Cisco 的设备&#xff0c;使用 EIGRP 协议将网络的路由打通。但是后来网络扩容&#xff0c;增加了一批华为的设备&#…

HAL库源码移植与使用之低功耗模式

低功耗特性对用电池供电的产品&#xff1a; 更小电池体积&#xff08;降低了大小和成本&#xff09; 延长电池寿命 电磁干扰更小&#xff0c;提高无线通信质量 电源设计更简单&#xff0c;无需过多考虑散热问题 电源供电区分为&#xff1a; 分为VDD供电区…

平面五杆机构运动学仿真matlab simulink

1、内容简介 略 89-可以交流、咨询、答疑 2、内容说明 略 ] 以 MATLAB 程序设计语言为平台 , 以平面可调五杆机构为主要研究对象 , 给定机构的尺寸参数 , 列出所 要分析机构的闭环矢量方程 , 使用 MATLAB 软件中 SIMULINK 仿真工具 , 在 SIMULINK 模型窗口下建立数…

深入理解TensorFlow底层架构

目录 深入理解TensorFlow底层架构 一、概述 二、TensorFlow核心概念 计算图 张量 三、TensorFlow架构组件 前端 后端 四、分布式计算 集群管理 并行计算 五、性能优化 内存管理 XLA编译 六、总结与展望 深入理解TensorFlow底层架构 一、概述 TensorFlow是一个开…

从0开始的STM32HAL库学习8

PWM控制舵机 配置环境 1. 选择TIM2时钟 2.选择内部时钟模式&#xff0c;打开通道二 3.分频系数PSC:72-1 自动重装寄存器ARR:20000-1 输出比较寄存器 CCR:500~2500( 后面可调整 ) 脉冲选择500后期可以改 编辑代码 调用启动函数 HAL_TIM_PWM_Start(&htim2,TIM_CHANN…

一分钟图情论文:《智慧数据视角下古籍数字出版的创新路径》

由武汉大学的雷珏莹和王晓光合著的《智慧数据视角下古籍数字出版的创新路径研究》论文从智慧数据1的视角出发&#xff0c;探讨了我国古籍数字出版的现状及其发展瓶颈&#xff0c;提出了古籍数字出版在内容、形式、服务和技术四个方面的创新路径。 文中, 研究者首先详细分析了当…

使用Fiddler进行Android和IOS抓包

Android抓包 要使用Telerik Fiddler Classic捕获Android设备的网络流量&#xff0c;您需要执行以下步骤&#xff1a; 在Fiddler Classic上进行设置&#xff1a; 确保已安装并使用BouncyCastle作为证书生成器。较新的Android版本会拒绝有效期超过两年的证书&#xff0c;目前只…

构建本地智能知识问答系统:基于Langchain和ChatGLM的简单实践

在数字化时代&#xff0c;智能知识问答系统成为了提升企业效率和数据安全性的关键工具。本文将介绍如何基于Langchain和ChatGLM构建一个本地化、支持中文的智能知识问答系统。该系统不仅能够实现完全本地化推理&#xff0c;而且对开源模型友好&#xff0c;可满足企业对数据隐私…

Windows中修改pip下载源

目录 一. 打开此电脑或文件管理器&#xff0c;输入 %APPDATA% 回车跳转 二. 在此目录中新建一个文件夹命令为pip 三. 进入这个目录&#xff0c;新建一个pip.ini文件 四. 复制阿里云镜像配置 五. CMD终端下载验证 六. 常用的国内镜像网站 一. 打开此电脑或文件管理器…

编程中的智慧六:单例、原型、建造者

上一篇咱们结合Spring介绍了设计模式中的工厂模式相关方法&#xff0c;其实现在Java开发基本上都是基于Spring框架开发&#xff0c;所以后续我们在开发过程中基本上很少自己重写一个工厂模式&#xff0c;都是直接使用Spring来完成。今天咱们接着看剩下的创建型设计模式&#xf…

配置VS+VLC并播放视频

文章目录 前言配置VSVLCVLC播放视频基本流程1. libvlc_new2. libvlc_set_user_agent3. libvlc_set_log_verbosity4. libvlc_media_new_path5. libvlc_media_player_new_from_media6. libvlc_media_player_play7. libvlc_media_player_get_state8. libvlc_media_release9. libvl…

使用9种方法隐藏和显示元素

<!DOCTYPE html> <html lang"zh-CN"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>使用9种方法隐藏和显示元素</title><sty…

Bash 学习摘录

文章目录 1、变量和参数的介绍&#xff08;1&#xff09;变量替换$(...) &#xff08;2&#xff09;特殊的变量类型export位置参数shift 2、引用&#xff08;1&#xff09;引用变量&#xff08;2&#xff09;转义 3、条件判断&#xff08;1&#xff09;条件测试结构&#xff08…

数据结构——栈(顺序结构)

一、栈的定义 栈是一种数据结构&#xff0c;它是一种只能在一端进行插入和删除操作的特殊线性表。这一端被称为栈顶&#xff0c;另一端被称为栈底。栈按照后进先出&#xff08;LIFO&#xff09;的原则进行操作&#xff08;类似与手枪装弹后射出子弹的顺序&#xff09;。在计算…

docker 打包orbbec

docker pull humble容器 sudo docker run -it osrf/ros:humble-desktop docker 启动容器 sudo docker run -u root --device/dev/bus/usb:/dev/bus/usb -it -v /home/wl:/share --name wl4 osrf/ros:humble-desktop /bin/bash新开一个终端 查看本地存在的容器&#xff1a;…