大语言模型-Transformer-Attention Is All You Need

news2024/9/22 4:06:07

一、背景信息:

Transformer是一种由谷歌在2017年提出的深度学习模型。

主要用于自然语言处理(NLP)任务,特别是序列到序列(Sequence-to-Sequence)的学习问题,如机器翻译、文本生成等。Transformer彻底改变了之前基于循环神经网络(RNNs)和长短期记忆网络(LSTMs)的序列建模范式,并且在性能上取得了显著提升。

二、整体结构:

Transformer 由 Encoder 和 Decoder 两个部分组成,Encoder 和 Decoder 都包含 6 个 block。

Transformer 的输入
Transformer 的输入由 x的 词向量位置向量 相加得到。
其中Transformer 在位置向量中保存单词在序列中的相对或绝对位置信息,位置向量由PE(Positional Encoding)表示:

eg:假设n为序列长度,d为表示向量维度,原始输入为 X o r i − i n p u t X_{ori-input} Xoriinput [ x 1 , x 2 . . . x n ] [x_{1},x_{2}...x_{n} ] [x1,x2...xn]
则,原始输入 X o r i − i n p u t X_{ori-input} Xoriinput的词向量矩阵为 X W E X_{WE} XWE其维度为(n, d),
原始输入 X o r i − i n p u t X_{ori-input} Xoriinput的位置向量矩阵 X P E X_{PE} XPE维度也为(n, d),
最终 Transformer 的输入矩阵 X i n p u t X_{input} Xinput = X W E X_{WE} XWE + X P E X_{PE} XPE维度也是(n, d)。

三、 Encoder

Encoder 部分由6个Encoder block 组成。
Encoder block 由Multi-Head Attention结合Add & Norm、Feed Forward结合 Add & Norm 组成。
即由下面两部分组成:
X = L a y d e r N o r m ( X i n p u t + M u l t i H e a d A t t e n t i o n ( X i n p u t ) ) X = LayderNorm(X_{input} + MultiHeadAttention(X_{input})) X=LayderNorm(Xinput+MultiHeadAttention(Xinput))
X = L a y d e r N o r m ( X + F e e d F o r w o r d ( X ) ) X = LayderNorm(X + FeedForword(X)) X=LayderNorm(X+FeedForword(X))

MultiHeadAttention部分
其中MultiHeadAttention为多个Self-Attention进行Concat后linear而成:
Q = X i n p u t × W q Q = X_{input} \times W_{q} Q=Xinput×Wq
K = X i n p u t × W k K = X_{input} \times W_{k} K=Xinput×Wk
V = X i n p u t × W v V = X_{input} \times W_{v} V=Xinput×Wv
Z = A t t e n t i o n ( Q , K , V ) = s o f t m a x ( Q K T d k ) V Z = Attention(Q, K, V) = softmax( \frac{QK^{T} }{\sqrt{d_{k}} } )V Z=Attention(Q,K,V)=softmax(dk QKT)V
其中, Z 1 . . . . Z 8 Z_{1}....Z_{8} Z1....Z8为X_{input} 经过8个不同Self-Attention得到的结果
X = M u l t i H e a d A t t e n t i o n ( X i n p u t ) = L i n e a r ( C o n c a t ( Z 1 , Z 2 . . . . Z 8 ) ) X =MultiHeadAttention(X_{input} ) = Linear(Concat(Z_{1},Z_{2}....Z_{8})) X=MultiHeadAttention(Xinput)=Linear(Concat(Z1,Z2....Z8))

FeedForword部分
Feed Forward 层,是一个两层的全连接层,第一层的激活函数为 Relu,第二层不使用激活函数,公式如下。

F e e d F o r w o r d ( X ) = m a x ( 0 , X W 1 + b 1 ) W 2 + b 2 FeedForword(X) = max(0, XW_{1} + b_{1})W_{2} + b_{2} FeedForword(X)=max(0,XW1+b1)W2+b2

四、 Decoder

Decoder 由 6个Decoder block 以及最后的一个linear组成。
Decoder block 由 一个带有 Masked的Multi-Head Attention结合Add & Norm和一个Multi-Head Attention结合Add & Norm以及一个Feed Forward结合 Add & Norm 组成。

X o u t p u t = X o u p u t − o r i ⊗ X M a s k X_{output}=X_{ouput-ori }\otimes X_{Mask} Xoutput=XouputoriXMask
X = L a y d e r N o r m ( X o u t p u t + M a s k M u l t i H e a d A t t e n t i o n ( X o u p u t ) ) X = LayderNorm(X_{output} + MaskMultiHeadAttention(X_{ouput})) X=LayderNorm(Xoutput+MaskMultiHeadAttention(Xouput))

X = L a y d e r N o r m ( X + M u l t i H e a d A t t e n t i o n ( [ X a s Q , E C a s K , E C a s V ] ) X = LayderNorm(X + MultiHeadAttention([X_{as Q}, EC_{as K}, EC_{as V}]) X=LayderNorm(X+MultiHeadAttention([XasQ,ECasK,ECasV])
X r e s u l t = S o f t m a x ( X ) X_{result} = Softmax(X) Xresult=Softmax(X)

带有 Masked的Multi-Head Attention层
其中带有 Masked的Multi-Head Attention中 X o u p u t X_{ouput} Xouput为Transformer 标签对应输出向量; X o u p u t − o r i X_{ouput-ori} Xouputori需要先 ⊗ \otimes X M a s k X_{Mask} XMask得到 X o u p u t X_{ouput} Xouput
Q = X o u p u t × W q Q = X_{ouput} \times W_{q} Q=Xouput×Wq
K = X o u p u t × W k K = X_{ouput} \times W_{k} K=Xouput×Wk
V = X o u p u t × W v V = X_{ouput} \times W_{v} V=Xouput×Wv
Z = A t t e n t i o n ( Q , K , V ) = s o f t m a x ( Q K T d k ⊗ X M a s k ) V Z = Attention(Q, K, V) = softmax( \frac{QK^{T} }{\sqrt{d_{k}} } \otimes X_{Mask} )V Z=Attention(Q,K,V)=softmax(dk QKTXMask)V

其中第二个 Multi-Head Attention层
Self-Attention 的 K, V矩阵使用的是根据Encoder编码的输出矩阵C计算得到 K, V; Self-Attention 的 Q矩阵是根据Decoder block中的Masked Multi-Head Attention层输出矩阵 Z 计算得到 Q。

Reference

1.Attention Is All You Need
2.Transformer模型详解(图解最完整版)
3.Self-Attention & Transformer完全指南:像Transformer的创作者一样思考

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1938859.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【python】Numpy运行报错分析:ValueError - 数组维度不一致

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,…

java中多态的用法

思维导图: 1. 多态的概念 多态通俗的讲就是多种形态,同一个动作,作用在不同对象上,所产生不同的形态。 例如下图: 2. 多态的实现条件 Java中,多态的实现必须满足以下几个条件: 1. 必须在继承…

动画革命:Lottie如何改变我们对移动应用交互的认知

在数字世界的浩瀚星空中,每一个像素都跃动着无限创意与想象的火花。当静态的界面遇上动态的魔法,一场视觉盛宴便悄然开启。今天,让我们一同揭开一位幕后英雄的神秘面纱——Lottie,这个在UI/UX设计界掀起波澜的动画利器&#xff0c…

[trick]使用生成器打破嵌套循环

原文 break用于结束循环。但是,如果有嵌套循环,如何跳出外层循环? def this_is_the_one(x):return x 3my_list [[1, 2], [3, 4], [5, 6]] for sublist in my_list:for element in sublist:print(f"Checking {element}")if this_…

农场驿站平台小程序的设计

管理员账户功能包括:系统首页,个人中心,用户管理,农场资讯管理,卖家管理,用户分享管理,分享类型管理,商品信息管理,商品分类管理,系统管理,订单管…

天舟飞船可视化:直观体验太空任务全过程

利用图扑先进的 3D 可视化技术,实时展示天舟飞船的发射、对接和任务执行,为观众提供身临其境的太空探索体验。

奥比岛手游攻略:新手攻略大全!云手机辅助!

《奥比岛:梦想国度》是一款画风可爱的Q版休闲益智手游。在这个充满童话色彩的世界里,玩家们可以度过快乐的每一天,结交许多朋友,完成各种任务,体验丰富多彩的游戏玩法。下面将为大家带来详细的攻略大全。 游戏前瞻&…

Java 面试 | Redis

目录 1. 在项目中缓存是如何使用的?2. 为啥在项目中要用缓存?3. 缓存如果使用不当会造成什么后果?4. redis 和 memcached 有什么区别?5. redis 的线程模型是什么?6. 为什么单线程的 redis 比多线程的 memcached 效率要…

Python酷库之旅-第三方库Pandas(035)

目录 一、用法精讲 106、pandas.Series.iloc方法 106-1、语法 106-2、参数 106-3、功能 106-4、返回值 106-5、说明 106-6、用法 106-6-1、数据准备 106-6-2、代码示例 106-6-3、结果输出 107、pandas.Series.__iter__魔法方法 107-1、语法 107-2、参数 107-3、…

Science Robotics 一种使用导电嵌段共聚物弹性体和心理物理阈值来实现准确触觉效果的方法

速读:电触觉刺激作为感官替代的形式存在许多问题,如反应不一致、疼痛和脱敏等问题。加州大学Darren J. Lipomi教授团队研究了一种利用导电嵌段共聚物弹性体和心理物理阈值来实现准确触觉的方法。通过优化材料、设备布局和校准技术,他们在10名…

web服务器——虚拟主机配置实战

搭建静态网站 —— 基于 http 协议的静态网站 实验 1 :搭建一个 web 服务器,访问该服务器时显示 “hello world” 欢迎界面 。 实验 2 :建立两个基于 ip 地址访问的网站,要求如下 该网站 ip 地址的主机位为 100 ,设置…

jupyter_contrib_nbextensions安装失败问题

目录 1.文件路径长度问题 2.jupyter不出现Nbextensions选项 1.文件路径长度问题 问题: could not create build\bdist.win-amd64\wheel\.\jupyter_contrib_nbextensions\nbextensions\contrib_nbextensions_help_item\contrib_nbextensions_help_item.yaml: No su…

【强化学习的数学原理】课程笔记--4(随机近似与随机梯度下降,时序差分方法)

目录 随机近似与随机梯度下降Mean estimationRobbins-Monro 算法用 Robbins-Monro 算法解释 Mean estimation用 Robbins-Monro 算法解释 Batch Gradient descent用 SGD 解释 Mean estimation SGD 的一个有趣的性质 时序差分方法Sarsa 算法一个例子 Expected Sarsa 算法n-step S…

LLM基础模型系列:Prefix-Tuning

------->更多内容&#xff0c;请移步“鲁班秘笈”&#xff01;&#xff01;<------ Prefix Tuning和Prompt Tuning最大的区别就是向每层的Transformer Block添加可训练的张量&#xff0c;而上一期的Prompt Tuning只是在输入的时候添加。 此外&#xff0c;通过全连接层&a…

【BUG】已解决:ModuleNotFoundError: No module named ‘sklearn‘

已解决&#xff1a;ModuleNotFoundError: No module named ‘sklearn‘ 目录 已解决&#xff1a;ModuleNotFoundError: No module named ‘sklearn‘ 【常见模块错误】 【解决方案】 欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 欢迎来到我的主页&#xff0c;我是…

模型剪枝入门

一、定义 1.定义 2. 案例1 3. 全局剪枝案例 4. 全局剪枝案例 5. 自定义剪枝 6. 特定网络剪枝 7. 多参数模块剪枝 8. torch.nn.utils.prune 解读 二、实现 定义 接口&#xff1a; import torch.nn.utils.prune as prune案例1 import torch.nn as nn import torch.nn.utils.…

深入理解Linux网络(二):UDP接收内核探究

深入理解Linux网络&#xff08;二&#xff09;&#xff1a;UDP接收内核探究 一、UDP 协议处理二、recvfrom 系统调⽤实现 一、UDP 协议处理 udp 协议的处理函数是 udp_rcv。 //file: net/ipv4/udp.c int udp_rcv(struct sk_buff *skb) {return __udp4_lib_rcv(skb, &udp_…

IntelliJ IDEA 直接在软件中更新为最新版

当我们的 IDEA 工具许久没有更新&#xff0c;已经拖了好几个版本&#xff0c;想跨大版本更新&#xff0c;比如从2020.2.1 -> 2023.x.x 此时&#xff0c;我们菜单栏点击 Help -> Check for Updates… &#xff0c;右下角会有提示更新&#xff0c;如下图&#xff1a; 点…

【深大计算机系统(2)】实验一 实验环境配置与使用 附常用指令

目录 一、 实验目标&#xff1a; 二、实验环境与工件&#xff1a; 三、实验内容与步骤 1. 学习并熟悉Linux基本操作&#xff0c;按照要求创建用户。&#xff08;30分&#xff09; 2.新建用户主目录下创建子目录&#xff1a;gdbdebug&#xff0c;并进入gdbdebug子目录。将过程和…

亲测--linux下安装ffmpeg最新版本---详细教程

下载地址 Download FFmpeg 下载最新的https://ffmpeg.org/releases/ffmpeg-7.0.1.tar.xz 上传到服务器 解压 tar xvf ffmpeg-7.0.1.tar.xz 编译 cd ffmpeg-7.0.1 ./configure --prefix=/usr/local/ffmpeg make && make install 报错: 解决:在后面加 跳过检测…