[集成学习]基于python的Stacking分类模型的客户购买意愿分类预测

news2024/12/23 12:19:31

1 导入必要的库

import pandas as pd
import numpy as np
import missingno as msno
import matplotlib.pyplot as plt
from matplotlib import rcParams
import seaborn as sns
from sklearn.metrics import roc_curve, auc
from sklearn.linear_model import LogisticRegression  
from sklearn.tree import DecisionTreeClassifier  
from sklearn.svm import SVC  
from sklearn.neighbors import KNeighborsClassifier  
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier  
from xgboost import XGBClassifier  
from lightgbm import LGBMClassifier  
from sklearn.ensemble import StackingClassifier  
from sklearn.metrics import confusion_matrix   
# 忽略Matplotlib的警告(可选)  
import warnings  
warnings.filterwarnings("ignore") 
# 设置中文显示和负号正常显示
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

2 导入数据

# 读取Excel文件
df = pd.read_excel('目标客户体验数据.xlsx')
df
idstylea1a2a3a4a5a6a7a8...B9B10B11B12B13B14B15B16B17isorno
012753.03539987.65379181.55817185.61159385.62967885.80757682.34645384.769555...6142319.011103050
12388.92279082.94626285.16608185.18972477.76249883.59557982.15236788.872546...654418.01080300
23395.04829493.33313177.66037593.03427488.86999894.16996295.60265595.877373...495224.01017000
34371.15232876.78576766.69170181.92612566.65499877.77367477.58024776.989502...6104727.0101018250
45370.57396271.64594970.44455474.02983266.65499866.33609262.09302174.436962...6134225.01515000
..................................................................
19591960271.35766375.37369070.44455477.76704468.43027675.02696575.48226170.333970...563525.01120000
19601961299.03688899.03017299.03255099.98334299.97749899.99186799.99271399.980365...5147929.09930200
19611962290.77128191.92105592.67178796.71974394.96189997.24515895.60265595.877373...684539.020170300
19621963282.42732788.51148974.05246493.03427476.46171194.70467691.16357295.877373...684421.012720200
19631964277.80869277.803468702.99611477.76704461.80365377.77367473.19018958.796528...674325.010122500

1964 rows × 28 columns

3 数据预处理

# 可视化缺失值
msno.matrix(df)
plt.axis('off')
plt.show()
# 将“B7”列中的缺失值替换为整型数值0
df['B7'].fillna(0, inplace=True)
# 检测重复值并处理
print("重复值数量:", df.duplicated().sum())
df.drop_duplicates(inplace=True)

        运行结果如图3-1所示:

图3-1 缺失值可视化与重复值检测

4 数据分布

4.1 箱线图
# 设置颜色风格为精简学术风格
sns.set_style("whitegrid")
# 设置图形大小  
plt.figure(figsize=(15, 40))  
features_to_plot_features = [col for col in df.columns]  
# 对每个特征绘制箱线图子图  
for i, feature in enumerate(features_to_plot_features):  
    plt.subplot(len(features_to_plot_features) // 2 + 1, 4, i + 1)  # 设置子图位置  
    sns.boxplot(df[feature], palette="Set3")  # 使用Set3颜色风格
    plt.title(feature)  
    plt.xlabel('')      
# 显示图形  
plt.tight_layout()  # 调整子图间距  
plt.show()

        运行结果如图4-1所示:

图4-1 箱线图

4.2 pair plot
# 使用seaborn的pairplot绘制数据分布
sns.pairplot(df)

        运行结果如图4-2所示:

图4-2 散点图

4.3 hist plot
# 设置颜色风格为精简学术风格 
#sns.set_style("whitegrid")
# 设置图形大小  
plt.figure(figsize=(15, 40))  
features_to_plot_features = [col for col in df.columns] 
# 对每个特征绘制
for i, feature in enumerate(features_to_plot_features):  
    plt.subplot(len(features_to_plot_features) // 2 + 1, 4, i + 1)  # 设置子图位置  
    #sns.kdeplot(df[feature], palette="Set3")  # 使用Set3颜色风格
    sns.histplot(df[feature], palette="Set3",kde=True)  # 使用Set3颜色风格
    plt.title(feature)  
    plt.xlabel('')          
# 显示图形  
plt.tight_layout()  # 调整子图间距  
plt.show()

        运行结果如图4-3所示:

图4-3 直方图

4.4 小提琴图
# 设置颜色风格为精简学术风格
sns.set_style("whitegrid")
# 设置图形大小  
plt.figure(figsize=(15,45))  
features_to_plot_features = [col for col in df.columns]  
palette=['deep','muted','pastel','muted','pastel','viridis','dark','rocket','crest','mako','flare','magma','viridis','vlag','icefire',
         'deep','muted','pastel','viridis','dark','colorblind','rocket','crest','mako','flare','magma','bright','vlag','icefire']
# 对每个特征绘制箱线图子图  
for i, feature in enumerate(features_to_plot_features):  
    plt.subplot(len(features_to_plot_features) // 2 + 1, 4, i + 1)  # 设置子图位置 
    sns.violinplot(df[feature], palette=palette[i])  
    plt.title(feature)  
    plt.xlabel('')  # 移除x轴标签,因为只有一个变量        
# 显示图形  
plt.tight_layout()  # 调整子图间距  
plt.show()

        运行结果如图4-4所示:

图4-4 小提琴图

5 相关性

5.1 heatmap
# 计算相关性矩阵  
corr_matrix = df.corr()    
# 绘制heatmap
plt.figure(figsize=(25,25))
sns.heatmap(corr_matrix, annot=True, cmap='PuOr', linewidths=.5)  
plt.title('Heatmap of Correlation Matrix')

        运行结果如图5-1所示:

图5-1 heatmap

5.2 clustermap
# 直接使用clustermap对原始数据进行聚类并绘制热图 
sns.clustermap(df, standard_scale=1, cmap='PuBuGn', annot=False, fmt=".2f")  
plt.title('Clustermap of DataFrame')  
plt.show()

        运行结果如图5-2所示:

图5-2 clustermap 

6 划分数据集

from sklearn.model_selection import train_test_split
X = df.drop('isorno', axis=1) 
y = df['isorno']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

7 Stacking分类模型建立

# 定义基础层分类器列表  
base_learners = [  
    ('Logistic Regression', LogisticRegression()),  
    ('Decision Tree', DecisionTreeClassifier()),  
    ('SVM', SVC(probability=True)),  
    ('KNN', KNeighborsClassifier(3)),  
    ('Random Forest', RandomForestClassifier()),  
    ('AdaBoost', AdaBoostClassifier()),  
    ('XGBoost', XGBClassifier()),  
    ('LightGBM', LGBMClassifier())  
]  
  
# 使用StackingClassifier构建stacking集成学习模型  
stacking_clf = StackingClassifier(  
    estimators=base_learners,  
    final_estimator=LogisticRegression()  
)  

8 训练模型

# 训练stacking集成学习模型  
stacking_clf.fit(X_train, y_train) 

      模型结构如图8-1所示:

图8-1 Stacking分类模型结构

9 预测

# 预测  
y_pred_stacking = stacking_clf.predict(X_test) 

10 预测结果

indices = range(len(y_test))  
  
# 绘制真实值和预测值的折线图  
plt.figure(figsize=(10, 6))  
plt.plot(indices, y_test, color='g', marker='o', markerfacecolor='none', markeredgecolor='black', label='True Values', linestyle='-')  
plt.plot(indices, y_pred_stacking, color='black', marker='*',markerfacecolor='none',markeredgecolor='r',label='Predicted Values', linestyle='--')  
plt.title('True vs Predicted Values')  
plt.xlabel('Index in Test Set')  
plt.ylabel('isorno Value')  
plt.legend()  
plt.grid(True)  
plt.show()

        运行结果如图10-1所示:

图10-1 预测结果

11 模型评估

11.1 混淆矩阵
plt.figure(figsize=(6,6))   
# 假设 num_classes 是类别的数量  
num_classes = len(np.unique(y_train))  
  
# 确保我们可以将分类器数量和一个额外的堆叠模型的混淆矩阵放入布局中  
# 这里我们假设最大可以显示9个基础分类器的混淆矩阵,以及一个堆叠模型的混淆矩阵  
max_classifiers_to_show = 9  
  
# 创建一个3x4的布局来容纳所有子图(9个基础分类器 + 1个堆叠模型)  
fig, axes = plt.subplots(nrows=3, ncols=3, figsize=(18, 12))  # 调整figsize以适应你的需要  
axes = axes.flatten()[:max_classifiers_to_show]  # 只使用前max_classifiers_to_show个子图  
  
# 创建一个颜色映射列表  
#cmaps = sns.color_palette("husl", max_classifiers_to_show)  # 使用seaborn的颜色映射  
cmaps = ['Blues', 'plasma', 'Spectral', 'Purples', 'gist_stern', 'gist_ncar', 'inferno', 'BuGn', 'binary']  
# 遍历分类器  
for ax_idx, (name, clf) in enumerate(base_learners[:max_classifiers_to_show]):  
    # 拟合模型  
    clf.fit(X_train, y_train)  
    # 预测测试集  
    y_pred = clf.predict(X_test)  
    # 计算混淆矩阵  
    cm = confusion_matrix(y_test, y_pred)  
    sns.heatmap(cm, annot=True, fmt='d', cmap=cmaps[ax_idx], ax=axes[ax_idx])  
    axes[ax_idx].set_xlabel('Predicted')  
    axes[ax_idx].set_ylabel('True')  
    axes[ax_idx].set_title(f'Confusion Matrix for {name}')  
  
# 添加堆叠集成学习模型的混淆矩阵  
stacking_cm = confusion_matrix(y_test, y_pred_stacking)  
sns.heatmap(stacking_cm, annot=True, fmt='d', cmap=cmaps[-1], ax=axes[-1])  # 使用最后一个颜色映射  
axes[-1].set_xlabel('Predicted')  
axes[-1].set_ylabel('True')  
axes[-1].set_title('Confusion Matrix for Stacking')  
  
# 显示图形  
plt.tight_layout()  # 确保子图之间不重叠  
plt.show()

        运行结果如图11-1所示:

图11-1 混淆矩阵

11.2 ROC曲线
plt.figure(figsize=(6, 6))  
markers = ['o', '.', '2', '^', '*', '>', '+', '1', 'p', '_', '8']  
linestyles = ['-', '--', ':', '-.', 'solid', 'dashed', '-.', '-.', ':', '-', '--']  
colors = ['b', 'g', 'r', 'c', 'r', 'y', 'k', 'tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'tab:purple', 'tab:brown', 'tab:pink', 'tab:gray', 'tab:olive', 'tab:cyan']  
  
# 绘制基础分类器的ROC曲线  
for i, (name, clf) in enumerate(base_learners):  
    clf.fit(X_train, y_train)  
    y_score = clf.predict_proba(X_test)[:, 1]  
    fpr, tpr, thresholds = roc_curve(y_test, y_score)  
    roc_auc = auc(fpr, tpr)  
    plt.plot(fpr, tpr, color=colors[i % len(colors)], label=f'{name} (AUC = {roc_auc:.2f})', marker=markers[i % len(markers)], linestyle=linestyles[i % len(linestyles)])  
  
# 绘制堆叠分类器的ROC曲线  
stacking_y_score = stacking_clf.predict_proba(X_test)[:, 1]  
stacking_fpr, stacking_tpr, _ = roc_curve(y_test, stacking_y_score)  
stacking_roc_auc = auc(stacking_fpr, stacking_tpr)  
plt.plot(stacking_fpr, stacking_tpr, color='black', label=f'Stacking (AUC = {stacking_roc_auc:.2f})', linestyle='--', marker='s')  
  
plt.plot([0, 1], [0, 1], color='grey', linestyle='--')  
plt.xlim([0.0, 1.0])  
plt.ylim([0.0, 1.05])  
plt.xlabel('False Positive Rate')  
plt.ylabel('True Positive Rate')  
plt.title('Receiver Operating Characteristic')  
plt.legend(loc="lower right")  
plt.show()

        运行结果如图11-2所示:

图11-2 ROC曲线对比

12 预测新数据

# 读取Excel文件
new_data = pd.read_excel('待判定的数据.xlsx')
# 将“B7”列中的缺失值替换为整型数值0
new_data['B7'].fillna(0, inplace=True)
# 检测重复值并处理
print("重复值数量:", new_data.duplicated().sum())
df.drop_duplicates(inplace=True)
if 'isorno' in new_data.columns:  
    new_data = new_data.drop('isorno', axis=1) 
# 预测  
new_pred_stacking = stacking_clf.predict(new_data) 
plt.plot(new_pred_stacking,color='black',marker='*',markerfacecolor='none',markeredgecolor='r',label='Predicted Values', linestyle='--')

        新预测结果如图12-1所示:

图12-1 新数据预测结果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1937545.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++ | Leetcode C++题解之第240题搜索二维矩阵II

题目&#xff1a; 题解&#xff1a; class Solution { public:bool searchMatrix(vector<vector<int>>& matrix, int target) {int m matrix.size(), n matrix[0].size();int x 0, y n - 1;while (x < m && y > 0) {if (matrix[x][y] targ…

Linux--实现线程池(万字详解)

目录 1.概念 2.封装原生线程方便使用 3.线程池工作日志 4.线程池需要处理的任务 5.进程池的实现 6.线程池运行测试 7.优化线程池&#xff08;单例模式 &#xff09; 单例模式概念 优化后的代码 8.测试单例模式 1.概念 线程池:* 一种线程使用模式。线程过多会带来调度…

QT--事件(丰富操作,高级功能)

一、事件 1.事件与信号的区别 事件来自外部&#xff0c;是随机发生的。信号来自内部&#xff0c;是主动发生的。有点像外中断和内中断的区别。事件&#xff1a;适用于处理系统级别的输入和状态变化&#xff0c;种类繁多&#xff0c;能够应对复杂的交互需求。信号/槽&#xff…

学习并测试SqlSugar的单库事务功能

SqlSugar支持单库事务、多租户事务、多库事务&#xff0c;本文学习并测试单库事务的基本用法。   使用SqlSugarClient类、ISqlSugarClient接口都可以创建SqlSugarClient数据库操作实例&#xff0c;其区别在于&#xff0c;针对单库而言&#xff0c;SqlSugarClient类支持调用Be…

硬件开发笔记(二十七):AD21导入DC座子原理图库、封装库,然后单独下载其3D模型融合为3D封装

若该文为原创文章&#xff0c;转载请注明原文出处 本文章博客地址&#xff1a;https://hpzwl.blog.csdn.net/article/details/140541464 长沙红胖子Qt&#xff08;长沙创微智科&#xff09;博文大全&#xff1a;开发技术集合&#xff08;包含Qt实用技术、树莓派、三维、OpenCV…

睿考网:2024年城乡规划师考试时间

2024年城乡规划师报名时间已经结束&#xff0c;考试时间以及考试科目为&#xff1a; 2024年9月7日&#xff1a; 9.00-11.30&#xff0c;城乡规划原理(客观题) 14.00-16.30&#xff0c;城乡规划相关知识(客观题) 2024年9月8日&#xff1a; 9.00-11.30&#xff0c;城乡规划管…

AV1技术学习:Intra Prediction

对于帧内预测模式编码块&#xff0c;亮度分量的预测模式和色度分量的预测模式在比特流中分别发出信号。亮度预测模式是基于相邻左侧和上侧两个编码块预测上下文的概率模型进行熵编码的。色度预测模式的熵编码取决于色度预测模式的状态。帧内预测以变换块为单位&#xff0c;并使…

PyTorch张量拼接方式【附维度拼接/叠加的数学推导】

文章目录 1、简介2、torch.cat3、torch.stack4、数学过程4.1、维度拼接4.1.1、二维张量4.1.2、三维张量4.1.3、具体实例 4.2、维度叠加4.2.1、0维叠加4.2.2、1维叠加4.2.3、2维叠加&#xff08;非常重要⭐&#xff09; &#x1f343;作者介绍&#xff1a;双非本科大三网络工程专…

Android14之调试广播实例(二百二十五)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

Linux的热插拔UDEV机制和守护进程

目录 一、Linux的热插拔UDEV机制 二、守护进程 2.1 守护进程概念和基本特点&#xff1a; 2.2 显示进程信息&#xff1a; 2.3 守护进程和后台进程的区别&#xff1a; 2.4 创建守护进程的步骤和守护进程的特征&#xff1a; 2.4.1 创建守护进程的步骤&#xff1a; 2.4.2 守…

京东Android一面凉经(2024)

京东Android一面凉经(2024) 笔者作为一名双非二本毕业7年老Android, 最近面试了不少公司, 目前已告一段落, 整理一下各家的面试问题, 打算陆续发布出来, 供有缘人参考。今天给大家带来的是《京东Android一面凉经(2024)》。 面试职位: Android开发工程师 技术一面 面试时长: 50…

Plant simulation 中快速创建相同属性轨道的方法

问题&#xff1a;默认的轨道宽度是0.3m&#xff0c;默认轨道是水平的。如果要创建大量宽度1m&#xff0c;竖着的轨道有没有效率的方法呢&#xff1f;答案肯定是有的&#xff0c;按下面方法操作即可。 1、复制两个轨道模型到用户对象中&#xff0c;命名为水平轨道和竖直轨道。 …

开源免费的一个企业级商城系统

人不走空 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌赋&#xff1a;斯是陋室&#xff0c;惟吾德馨 系统简介 ShopXO&#xff1a; 是一款企业级免费开源商城系统&#xff0c;具备可视化DIY拖拽装修功能&#xff0…

[240720] X-CMD 发布 v0.4.1:新增 OpenAI GPT-4o mini 模型|优化 df ip dns ...

目录 X-CMD 发布 v0.4.1✨ openai✨ chat✨ df✨ ip✨ kev✨ dns✨ shodan✨ pick✨ theme X-CMD 发布 v0.4.1 ✨ openai 更新 X-CMD 现已支持 OpenAI 最新模型 GPT-4o mini&#xff01; &#x1f389; 用户只需使用 gpt4om 即可直接调用这款强大的模型。gpt 的默认模型由 g…

PyTorch张量数值计算

文章目录 1、张量基本运算2、阿达玛积3、点积运算4、指定运算设备⭐5、解决在GPU运行PyTorch的问题 &#x1f343;作者介绍&#xff1a;双非本科大三网络工程专业在读&#xff0c;阿里云专家博主&#xff0c;专注于Java领域学习&#xff0c;擅长web应用开发、数据结构和算法&am…

计算机的错误计算(三十二)

摘要 在计算机的错误计算&#xff08;二十八&#xff09;与&#xff08;三十 一&#xff09;中&#xff0c;我们探讨了 Visual Studio 对 6个随机exp(x)函数的计算精度问题。根据网友的反馈&#xff0c;本节将展示 Python 对它们的输出&#xff1a;结果几乎与 Visual Studio …

C# —— CRC16 算法

CRC16:即循环冗余校验码。数据通信当中一种常用的查错校验码 其特征信息字段和校验字段的长度可以是任意选定的&#xff0c;对数据进行指定多项式计算 并且将得到的结果附加在帧的后面&#xff0c;接受的设备也执行类似的算法&#xff0c;以保证数据传输的正确性和完整性 crc…

ELK日志收集

一、什么是ELK ELK 是由 Elasticsearch、Logstash、Kibana 三个开源软件的组成的一个组合体&#xff0c;ELK 是 elastic 公司研发的一套完整的日志收集、分析和展示的企业级解决方案。 ELK 的好处&#xff1a; ELK 组件在大数据运维系统中&#xff0c;主要可解决的问题如下&…

录取查询老师在哪里制作?

随着考试的落幕&#xff0c;家长们焦急等待的心情终于可以稍微缓解&#xff0c;因为录取结果即将揭晓。然而&#xff0c;对于老师来说&#xff0c;这仅仅是另一项繁重工作的开始。他们需要将每一份录取通知单逐一发送给学生家长&#xff0c;这个过程不仅耗时而且容易出错。面对…

基于SSM的高考志愿选择辅助系统

基于SSM的高考志愿选择辅助系统的设计与实现~ 开发语言&#xff1a;Java数据库&#xff1a;MySQL技术&#xff1a;SpringSpringMVCMyBatis工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 系统展示 前台 前台首页 院校展示 后台 后台首页 学校管理 摘要 随着高考制度的不断完…