STM32之八:IIC通信协议

news2025/1/25 9:15:27

目录

1. IIC协议简介

1.1 主从模式

1.2 2根通信线

2. IIC协议时序

2.1 起始条件和终止条件

2.2 发送一个字节

2.3 接收一个字节

2.4 应答信号


1. IIC协议简介

IIC协议是一个半双工、同步、一主多从、多主多从的串行通用数据总线。该通信模式需要2根线:SCL、SDA,即时钟线和数据线。

1.1 主从模式

IIC协议支持一主多从和多主多从,每个设备都有唯一的地址。

1.2 2根通信线

SDA:数据线,用于传输数据

SCL:时钟线,用于同步数据传输

接线时所有IIC设备的SCL连在一起,SDA连在一起,不同的设备,都是并联接在这两条线上(设备之间“线与”关系),I2C总线上的每个设备都自己一个唯一的地址,来确保不同设备之间访问的准确性。设备的SCL的SDA均要配置成开漏输出模式,SCL和SDA需要各添加一个上拉电阻,阻值一般为4.7KΩ左右。

这里补充一下,因为有看到过一个主机一个从机的情况下,可以设置为推挽输出模式,但是在一主多从,或者多主多从的情况下,推荐开漏输出,原因请看下文。

为了能理解为什么在IIC协议总线上,IO口模式需要设置为开漏输出模式,而不能使用推挽输出模式,可以看下GPIO口的硬件结构:

I/O端口位的基本结构

看输出驱动器部分,可以看到使用了两个MOS管,分别是P-MOS和N-MOS管,这些是STM32 GPIO输出模式的关键元件。‌在推挽输出模式下,‌P-MOS管和N-MOS管都工作,‌通过控制这些管的开关状态来实现高电平和低电平的输出。‌在开漏输出模式下,‌只有N-MOS管工作,‌用于输出低电平,‌而高电平的输出则需要通过外部上拉电阻实现。

推挽输出模式:

推挽输出结构是由两个MOS收到互补控制的信号控制。推挽输出的最大特点是可以真正能真正的输出高电平和低电平,在两种电平下都具有驱动能力。推挽输出模式中,N-MOS管和P-MOS管都工作,如果我们控制输出为0(低电平),则P-MOS管关闭,N-MOS管导通,输出低电平;若控制输出为1(高电平),则P-MOS管导通,N-MOS管关闭,输出高电平。外部上拉和下拉的作用是控制在没有输出时的IO口电平。

优点:驱动能力强,电平切换能力快(根据GPIO的波特率可用作模拟其他协议)。

缺点:多个推挽输出端口相连时,由于通路上阻抗较小电流会从IO的VDD流向另一个IO的GND,会发生短路进而对端口造成伤害。(这里就解释了为什么IIC不能使用推挽输出模式,如果多个从机都接到SDA线上,一个机器发送数据0,另一个机器发送数据1,则可能会发生短路进而毁坏IIC器件)。

开漏输出模式:

开漏输出时只有N-MOS管工作,只能输出低电平。当其输出高电平时没有驱动能力(电压会被外部阻抗拉低),需要借助外部上拉电阻完成对外驱动(通断N-MOS实现对路径上的电压控制),驱动能力取决于上拉电阻阻值。

如果我们控制输出为0(低电平),则P-MOS管关闭,N-MOS管导通,输出低电平;若控制输出为1(高电平),则P-MOS管和N-MOS管都关闭,输出指令就不会起到作用,此时I/O端口的电平就不由输出的高低电平决定,而是由I/O端口外部的上拉或者下拉决定。如果没有上拉或者下拉 IO口就处于悬空状态。

半双工:一根数据线,这根数据线既可以发送数据,也可以接收数据,但是不能同时发送和接收,所以叫做半双工通信。

代码如下:注意开漏输出模式

// PB11-->SDA
// PB10-->CLK

void MyI2C_Init(void)
{
	/*开启时钟*/
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);	//开启GPIOB的时钟
	
	/*GPIO初始化*/
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10 | GPIO_Pin_11;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOB, &GPIO_InitStructure);					//将PB10和PB11引脚初始化为开漏输出
	
	/*设置默认电平*/
	GPIO_SetBits(GPIOB, GPIO_Pin_10 | GPIO_Pin_11);			//设置PB10和PB11引脚初始化后默认为高电平(释放总线状态)
}

2. IIC协议时序

2.1 起始条件和终止条件

IIC需要起始信号和终止信号。

/**
  * 函    数:I2C起始
  * 参    数:无
  * 返 回 值:无
  */
void MyI2C_Start(void)
{
	MyI2C_W_SDA(1);							//释放SDA,确保SDA为高电平
	MyI2C_W_SCL(1);							//释放SCL,确保SCL为高电平
	MyI2C_W_SDA(0);							//在SCL高电平期间,拉低SDA,产生起始信号
	MyI2C_W_SCL(0);							//起始后把SCL也拉低,即为了占用总线,也为了方便总线时序的拼接
}
/**
  * 函    数:I2C终止
  * 参    数:无
  * 返 回 值:无
  */
void MyI2C_Stop(void)
{
	MyI2C_W_SDA(0);							//拉低SDA,确保SDA为低电平
	MyI2C_W_SCL(1);							//释放SCL,使SCL呈现高电平
	MyI2C_W_SDA(1);							//在SCL高电平期间,释放SDA,产生终止信号
}


//---------------
/**
  * 函    数:I2C写SCL引脚电平
  * 参    数:BitValue 协议层传入的当前需要写入SCL的电平,范围0~1
  * 返 回 值:无
  * 注意事项:此函数需要用户实现内容,当BitValue为0时,需要置SCL为低电平,当BitValue为1时,需要置SCL为高电平
  */
void MyI2C_W_SCL(uint8_t BitValue)
{
	GPIO_WriteBit(GPIOB, GPIO_Pin_10, (BitAction)BitValue);		//根据BitValue,设置SCL引脚的电平
	Delay_us(10);												//延时10us,防止时序频率超过要求
}

/**
  * 函    数:I2C写SDA引脚电平
  * 参    数:BitValue 协议层传入的当前需要写入SDA的电平,范围0~0xFF
  * 返 回 值:无
  * 注意事项:此函数需要用户实现内容,当BitValue为0时,需要置SDA为低电平,当BitValue非0时,需要置SDA为高电平
  */
void MyI2C_W_SDA(uint8_t BitValue)
{
	GPIO_WriteBit(GPIOB, GPIO_Pin_11, (BitAction)BitValue);		//根据BitValue,设置SDA引脚的电平,BitValue要实现非0即1的特性
	Delay_us(10);												//延时10us,防止时序频率超过要求
}

2.2 发送一个字节

/**
  * 函    数:I2C发送一个字节
  * 参    数:Byte 要发送的一个字节数据,范围:0x00~0xFF
  * 返 回 值:无
  */
void MyI2C_SendByte(uint8_t Byte)
{
	uint8_t i;
	for (i = 0; i < 8; i ++)				//循环8次,主机依次发送数据的每一位
	{
		MyI2C_W_SDA(Byte & (0x80 >> i));	//使用掩码的方式取出Byte的指定一位数据并写入到SDA线
		MyI2C_W_SCL(1);						//释放SCL,从机在SCL高电平期间读取SDA
		MyI2C_W_SCL(0);						//拉低SCL,主机开始发送下一位数据
	}
}

2.3 接收一个字节

/**
  * 函    数:I2C接收一个字节
  * 参    数:无
  * 返 回 值:接收到的一个字节数据,范围:0x00~0xFF
  */
uint8_t MyI2C_ReceiveByte(void)
{
	uint8_t i, Byte = 0x00;					//定义接收的数据,并赋初值0x00,此处必须赋初值0x00,后面会用到
	MyI2C_W_SDA(1);							//接收前,主机先确保释放SDA,避免干扰从机的数据发送
	for (i = 0; i < 8; i ++)				//循环8次,主机依次接收数据的每一位
	{
		MyI2C_W_SCL(1);						//释放SCL,主机机在SCL高电平期间读取SDA
		if (MyI2C_R_SDA() == 1){Byte |= (0x80 >> i);}	//读取SDA数据,并存储到Byte变量
														//当SDA为1时,置变量指定位为1,当SDA为0时,不做处理,指定位为默认的初值0
		MyI2C_W_SCL(0);						//拉低SCL,从机在SCL低电平期间写入SDA
	}
	return Byte;							//返回接收到的一个字节数据
}

/**
  * 函    数:I2C读SDA引脚电平
  * 参    数:无
  * 返 回 值:协议层需要得到的当前SDA的电平,范围0~1
  * 注意事项:此函数需要用户实现内容,当前SDA为低电平时,返回0,当前SDA为高电平时,返回1
  */
uint8_t MyI2C_R_SDA(void)
{
	uint8_t BitValue;
	BitValue = GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_11);		//读取SDA电平
	Delay_us(10);												//延时10us,防止时序频率超过要求
	return BitValue;											//返回SDA电平
}

2.4 应答信号

/**
  * 函    数:I2C发送应答位
  * 参    数:Byte 要发送的应答位,范围:0~1,0表示应答,1表示非应答
  * 返 回 值:无
  */
void MyI2C_SendAck(uint8_t AckBit)
{
	MyI2C_W_SDA(AckBit);					//主机把应答位数据放到SDA线
	MyI2C_W_SCL(1);							//释放SCL,从机在SCL高电平期间,读取应答位
	MyI2C_W_SCL(0);							//拉低SCL,开始下一个时序模块
}

/**
  * 函    数:I2C接收应答位
  * 参    数:无
  * 返 回 值:接收到的应答位,范围:0~1,0表示应答,1表示非应答
  */
uint8_t MyI2C_ReceiveAck(void)
{
	uint8_t AckBit;							//定义应答位变量
	MyI2C_W_SDA(1);							//接收前,主机先确保释放SDA,避免干扰从机的数据发送
	MyI2C_W_SCL(1);							//释放SCL,主机机在SCL高电平期间读取SDA
	AckBit = MyI2C_R_SDA();					//将应答位存储到变量里
	MyI2C_W_SCL(0);							//拉低SCL,开始下一个时序模块
	return AckBit;							//返回定义应答位变量
}

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1935713.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据监控电商平台价格心得分享

一、引言 在当今竞争激烈的电商环境中&#xff0c;价格是影响消费者购买决策的重要因素之一。对于电商从业者和商家来说&#xff0c;有效地监控电商平台的价格变动至关重要。通过数据监控&#xff0c;我们可以及时了解市场动态、调整策略&#xff0c;以保持竞争力并实现利润最大…

泰迪科技2024年高校(本科/职业院校)大数据实验室建设及大数据实训平台整体解决方案

高校大数据应用人才培养目标 大数据专业是面向信息技术行业&#xff0c;培养德智体美劳全面发展的大数据领域的高素质管理型专门人才&#xff0c;毕业生具备扎实的管理学、经济学、自然科学、技术应用、人文社科的基本理论, 系统深入的大数据管理专业知识和实践能力&#xff0c…

04 Git与远程仓库

第4章&#xff1a;Git与远程仓库 一、Gitee介绍及创建仓库 一&#xff09;获取远程仓库 ​ 使用在线的代码托管平台&#xff0c;如Gitee&#xff08;码云&#xff09;、GitHub等 ​ 自行搭建Git代码托管平台&#xff0c;如GitLab 二&#xff09;Gitee创建仓库 ​ gitee官…

四种垃圾收集算法详解(JVM)

一、标记清除 1、原理 从根集合节点进行扫描&#xff0c;标记出所有的存活对象&#xff0c;最后扫描整个内存空间并清除没有标记的对象&#xff08;即死亡对象) 标记后 &#xff08;黑色&#xff1a;可回收 | 灰色&#xff1a;存活对象 | 白色&#xff1a;未使用 &#xff0…

HarmonyOS鸿蒙- 跳转系统应用能力

一、通过弹窗点击设置跳转系统应用能力 1、 自定义弹窗效果图 2、 自定义弹窗代码 import { common, Want } from kit.AbilityKit; import { BusinessError } from kit.BasicServicesKit;export function alertDialog() {AlertDialog.show({title: ,message: 当前功能依赖定位…

算法力扣刷题记录 五十一【654.最大二叉树】

前言 二叉树篇&#xff0c;继续。 记录 五十一【654.最大二叉树】 一、题目阅读 给定一个不重复的整数数组 nums 。 最大二叉树 可以用下面的算法从 nums 递归地构建: 创建一个根节点&#xff0c;其值为 nums 中的最大值。递归地在最大值 左边 的 子数组前缀上 构建左子树。…

【Linux】安装PHP扩展-Swoole

说明 本文档是在centos7.6的环境下&#xff0c;安装PHP7.4之后&#xff0c;安装对应的PHP扩展Swoole。 一、swoole简述 Swoole 是一个为 PHP 设计的高性能的异步并行网络通信引擎&#xff0c;它以扩展&#xff08;extension&#xff09;的形式存在&#xff0c;极大地提升了 …

Linux--YUM仓库部署及NFS共享存储

目录 一、YUM仓库服务 1.1 YUM介绍 1.2 yum 常用的命令 1.3 YUM 源的提供方式 1.3.1 配置本地 yum 源仓库 1.3.2 配置 ftp 源 1.3.3 配置http服务源 二、NFS 共享存储 2.1 NFS基本概述 2.2 为什么使用 NFS 共享存储 2.3 NFS 应用场景 2.4 NFS 实现原理 2.5 NFS文件…

【python学习】爬虫中常使用的urllib和requests库的的背景、定义、特点、功能、代码示例以及两者的区别

引言 urllib是Python标准库中的一个模块&#xff0c;它提供了一系列用于操作URL的功能 requests是一个Python第三方库&#xff0c;由Kenneth Reitz创建&#xff0c;用于简化HTTP客户端的编程 一、urllib的定义 urllib可以操作url&#xff0c;主要分为以下几个子模块&#xff1…

Nginx详解(超级详细)

目录 Nginx简介 1. 为什么使用Nginx 2. 安装Nginx Nginx的核心功能 1. Nginx反向代理功能 2. Nginx的负载均衡 3 Nginx动静分离 Nginx简介 Nginx是一款轻量级的Web 服务器/反向代理服务器及电子邮件&#xff08;IMAP/POP3&#xff09;代理服务器&#xff0c;在BSD-like 协…

深入Redis集群部署:从安装配置到测试验证的完整指南

&#x1f3e1;作者主页&#xff1a;点击&#xff01; &#x1f427;Linux基础知识(初学)&#xff1a;点击&#xff01; &#x1f427;Linux高级管理防护和群集专栏&#xff1a;点击&#xff01; &#x1f510;Linux中firewalld防火墙&#xff1a;点击&#xff01; ⏰️创作…

FastAPI 学习之路(六十)打造系统的日志输出

我们要搭建日志系统&#xff0c;可以使用loguru&#xff0c;很不错的一个开源日志系统 pip install loguru 我们在common创建log.py&#xff0c;使用方式也很简单 import os import timefrom loguru import logger# 日志的路径 log_path os.path.join(os.getcwd(), "log…

信息安全工程师题

物理隔离技术要求两台物理机物理上并不直连&#xff0c;只能进行间接的信息交换。所以防火墙不能实现网络的物理隔离Web应用防火墙可以防止SQL注入、xss攻击、恶意文件上传、远程命令执行、文件包含、恶意扫描拦截等&#xff1b;可以发现并拦截恶意的Web代码&#xff1b;可防止…

树形背包问题

一些题目给定了树形结构&#xff0c;在这个树形结构中选取一定数量的点或边&#xff08;也可能是其他属性&#xff09;&#xff0c;使得某种与点权或者边权相关的花费最大或者最小。解决这类问题&#xff0c;一般要考虑使用树上背包。 树上背包&#xff0c;顾名思义&#xff0c…

JDK垃圾回收机制和垃圾回收算法

查看java相关信息 java -XX:PrintCommandLineFlags -version UseParallelGC 即 Parallel Scavenge Parallel Old,再查看详细信息 内存分配策略 1. 对象优先在 Eden 分配 大多数情况下&#xff0c;对象在新生代 Eden 区分配&#xff0c;当 Eden 区空间不够时&#xff0c;发…

STM32被拔网线 LWIP的TCP无法重连解决方案

目录 一、问题描述 二、项目构成 三、问题解决 1.问题代码 2.解决思路 3.核心代码&#xff1a; 四、完整代码 1.监测网口插入拔出任务 2.TCP任务 3.创建tcp任务 4.删除tcp任务 五、总结 一、问题描述 最近遇到一个问题&#xff0c;就是我的stm32设备作为tcp客户端…

c# listview控件调整标题显示顺序

右键点击listview,选择编辑列 修改DisplayIndex listview在成员位置点击上下箭头移动后&#xff0c;实际显示不会改变&#xff0c;因为DisplayIndex没有改变

Python 工程师对 3D 高斯溅射的介绍(第 1 部分)

从 Python 工程师的角度理解和编写 Gaussian Splatting 欢迎来到雲闪世界。2023 年初&#xff0c;来自法国蔚蓝海岸大学和马克斯普朗克信息研究所的作者发表了一篇题为“用于实时场渲染的 3D 高斯溅射”的论文。 该论文展示了实时神经渲染的重大进步&#xff0c;超越了 NeRF 等…

一文吃透,低代码是什么?盘点国内十大低代码平台,你用过哪个?

什么是低代码(Low Code)&#xff1f;低代码是怎么火的&#xff1f;国内十大低代码平台分别是谁&#xff1f;低代码项目开发流程是怎样的&#xff1f;低代码和无代码区别是啥&#xff1f;以及低代码的核心价值是什么&#xff1f;可以使用低代码开发平台创建哪些应用&#xff1f;…

el-cascader数据回显失败

el-cascader选中数据第一次回显正常&#xff0c;当选中数据改变再次回显时失败&#xff0c;呈现的还是上次的选中数据 如图 常用的方法this. n e x t T i c k ( ( ) > ) 跟 t h i s . nextTick(() > {})跟this. nextTick(()>)跟this.forceUpdate();强制刷新数据都无…