人工智能算法工程师(中级)课程17-模型的量化与部署之剪枝技巧与代码详解

news2025/1/7 17:14:42

大家好,我是微学AI,今天给大家介绍一下人工智能算法工程师(中级)课程17-模型的量化与部署之剪枝技巧与代码详解。模型剪枝是深度学习领域中一项关键的技术,旨在减少神经网络中的冗余权重,从而降低计算成本和内存占用,同时尽可能保持模型性能不变。本课程将深入探讨剪枝技巧及其在模型量化与部署中的应用,适合中级人工智能算法工程师学习。
在这里插入图片描述

文章目录

  • 一、引言
  • 二、非结构化剪枝
    • 1. 数学原理
    • 2. 代码实现
  • 三、结构化剪枝
    • 1. 数学原理
    • 2. 代码实现
  • 四、随机剪枝
    • 1. 数学原理
    • 2. 代码实现
  • 五、范数剪枝
    • 1. 数学原理
    • 2. 代码实现
  • 六、迭代剪枝
    • 1. 数学原理
    • 2. 代码实现
  • 七、总结

一、引言

随着深度学习技术的不断发展,模型规模逐渐增大,计算资源需求也随之增加。为了满足移动端和嵌入式设备的部署需求,模型的量化与剪枝技术应运而生。本文将详细介绍模型剪枝中的非结构化剪枝、结构化剪枝、随机剪枝、范数剪枝和迭代剪枝等技巧,并使用PyTorch搭建完整可运行的代码。

二、非结构化剪枝

1. 数学原理

非结构化剪枝是指对模型中的权重矩阵进行稀疏化处理,去除不重要的连接。具体来说,对于权重矩阵 W W W,我们可以通过以下公式进行剪枝:
W ′ = W ∗ m a s k W' = W * mask W=Wmask
其中, m a s k mask mask是一个与 W W W形状相同的矩阵,其元素为0或1。0表示对应的权重被剪枝,1表示保留。

2. 代码实现

import torch
import torch.nn.utils.prune as prune
# 假设有一个简单的全连接层
fc = torch.nn.Linear(10, 10)
# 非结构化剪枝,剪掉50%的权重
prune.l1_unstructured(fc, 'weight', amount=0.5)
# 查看剪枝后的权重
print(fc.weight)

三、结构化剪枝

1. 数学原理

结构化剪枝是指对整个滤波器或通道进行剪枝。与非结构化剪枝相比,结构化剪枝更容易实现硬件加速。对于权重矩阵W,结构化剪枝可以表示为:
W ′ = W ∗ M W' = W * M W=WM
其中, M M M是一个与 W W W形状相同的矩阵,但其元素为0或1的块状矩阵。

2. 代码实现

# 假设有一个卷积层
conv = torch.nn.Conv2d(3, 10, kernel_size=3)
# 结构化剪枝,剪掉25%的滤波器
prune.ln_structured(conv, 'weight', amount=0.25, n=2, dim=0)
# 查看剪枝后的权重
print(conv.weight)

四、随机剪枝

1. 数学原理

随机剪枝是一种简单的剪枝方法,它随机选择一部分权重进行剪枝。具体操作如下:
1.设定剪枝比例:决定要移除的权重比例。
2.生成随机数:为每个权重生成0到1之间的随机数。
3.执行剪枝:若随机数小于剪枝比例,将权重置为0。

2. 代码实现

# 假设有一个简单的全连接层
fc = torch.nn.Linear(10, 10)
# 随机剪枝,剪掉30%的权重
prune.random_unstructured(fc, 'weight', amount=0.3)
# 查看剪枝后的权重
print(fc.weight)

五、范数剪枝

1. 数学原理

范数剪枝是根据权重的大小进行剪枝。具体来说,对于权重矩阵 W W W,我们可以计算其 L 1 L_1 L1范数或 L 2 L_2 L2范数,然后剪掉范数较小的权重。

2. 代码实现

# 假设有一个简单的全连接层
fc = torch.nn.Linear(10, 10)
# 范数剪枝,剪掉20%的权重
prune.ln_structured(fc, 'weight', amount=0.2, n=1, dim=0)
# 查看剪枝后的权重
print(fc.weight)

六、迭代剪枝

1. 数学原理

迭代剪枝(Iterative Pruning)是一种常用的模型压缩技术,旨在减少神经网络的参数数量,以降低计算成本和存储需求,同时尽量保持模型的性能。这种方法通过逐步移除网络中不重要的权重,允许模型在每次剪枝后重新学习,以适应参数的减少。下面是对迭代剪枝过程的详细说明:
初始化剪枝比例
在开始剪枝之前,首先设定一个初始的剪枝比例。这个比例决定了第一次剪枝时要移除的权重数量占总权重的比例。例如,如果设置为10%,则第一次剪枝将移除所有权重中绝对值最小的10%。
对模型进行剪枝
根据当前的剪枝比例,识别并移除模型中不重要的权重。通常,权重的重要性可以通过它们的绝对值大小来衡量,绝对值越小的权重被认为越不重要。剪枝操作可以是直接将权重设置为零(即权重掩码),也可以是物理上删除这些权重,这取决于具体的实现方式。
训练模型
剪枝后,模型的结构发生了变化,因此需要重新训练模型,以便模型能够适应新的结构。这一步骤通常称为“微调”(Fine-tuning),目的是让模型在参数减少的情况下尽可能恢复到剪枝前的性能水平,甚至进一步优化。
重复步骤2和3
迭代剪枝的核心在于重复上述剪枝和微调的过程,每次迭代都根据一定的策略增加剪枝比例,直到达到预定的目标剪枝比例。例如,从10%开始,每轮迭代增加5%,直到达到50%的剪枝比例。

在整个过程中,有几个关键点需要注意:
剪枝策略:如何选择要剪掉的权重,除了基于权重的绝对值大小,还可以考虑其他因素,如梯度、激活值等。
微调策略:剪枝后的微调需要足够的训练轮次,以确保模型能够充分适应结构的变化。
剪枝比例的递增策略:剪枝比例的增加速度会影响模型的性能和稳定性,过快的增加可能导致模型性能急剧下降。

2. 代码实现

# 假设有一个简单的全连接层
fc = torch.nn.Linear(10, 10)
# 迭代剪枝,总共剪掉60%的权重
for i in range(3):
    prune.l1_unstructured(fc, 'weight', amount=0.2)
    # 训练模型
# 查看剪枝后的权重
print(fc.weight)

七、总结

本文详细介绍了模型量化与部署中的剪枝技巧,包括非结构化剪枝、结构化剪枝、随机剪枝、范数剪枝和迭代剪枝。通过数学原理和代码实现,希望读者能更好地理解和应用这些剪枝方法。在实际应用中,可以根据模型特点和硬件需求选择合适的剪枝策略。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1934935.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

昇思25天学习打卡营第5天 | 数据集

在探索MindSpore深度学习框架中的数据集处理过程,我对其数据加载和处理流程有了深入的了解。MindSpore提供了一套功能强大的工具,可以有效地处理和转换数据,确保了数据预处理的效率和质量。以下是我从本次学习中得到的几点主要心得&#xff1…

食堂采购系统开发:从需求分析到上线实施的完整指南

本篇文章,笔者将详细介绍食堂采购系统从需求分析到上线实施的完整过程,旨在为开发团队和管理者提供一个系统化的指南。 一、需求分析 1.用户需求 常见的需求包括: -采购计划管理 -供应商管理 -库存管理 -成本控制 -报表生成 2.系统功…

【电路笔记】-放大器的输入和输出阻抗

放大器的输入和输出阻抗 文章目录 放大器的输入和输出阻抗1、概述2、输入和输出阻抗的定义3、阻抗的重要性4、阻抗设置5、设置方法6、总结1、概述 从非常简单的角度来看,放大器由一个“盒子”组成,实现输入信号和输出信号之间的放大功能。 输入进入系统和输出离开系统的方式…

【从零开始实现stm32无刷电机FOC】【实践】【6/7 CMSIS-DSP】

目录 导入CMSIS-DSP库使用CMSIS-DSP 点击查看本文开源的完整FOC工程 CMSIS-DSP库是ARM开源的、对ARM处理器优化的数学库,本文使用了其提供的三角函数、反park变换函数、park变换函数、clarke变换函数、PID控制器。 CMSIS-DSP原始代码仓库是https://github.com/ARM-s…

Spring Boot1(概要 入门 Spring Boot 核心配置 YAML JSR303数据校验 )

目录 一、Spring Boot概要 1. SpringBoot优点 2. SpringBoot缺点 二、Spring Boot入门开发 1. 第一个SpringBoot项目 项目创建方式一:使用 IDEA 直接创建项目 项目创建方式二:使用Spring Initializr 的 Web页面创建项目 (了解&#…

cms wpscan使用方式--kali linux

WPScan是一个用于WordPress安全审计和漏洞扫描的工具,可以通过以下命令来使用WPScan: 扫描一个网站: wpscan --url http://example.com扫描一个网站并指定用户名和密码: wpscan --url http://example.com --useradmin --passwo…

Windows FFmpeg 开发环境搭建

FFmpeg 开发环境搭建 FFmpeg命令行环境搭建使用FFmpeg官方编译的库Windows编译FFmpeg1. 下载[msys2](https://www.msys2.org/#installation)2. 安装完成之后,将安装⽬录下的msys2_shell.cmd中注释掉的 rem set3. 修改pacman 镜像源并安装依赖4. 下载并编译源码 FFmpeg命令行环境…

2024年7月17日(nodejs,npm设置国内镜像,vue脚手架,远程管理ssh,踢出用户,scp命令,ssh免密登录)

1、安装nodejs服务 nodejs是一个运行1环境,和javajdk运行环境格式一样 [roota ~]# yum -y install nodejs.x86_64 安装完成之后,使用node -v 查看版本 [roota ~]# node -v v16.20.2 2、简易服务器的环境安装npm 安装包管理器 npm node packae manger [ro…

Odoo17架构概述

多层架构 Odoo遵循多层架构,这意味着演示,业务逻辑和数据存储是分开的。更具体地说,它使用三层架构。 UI展示层 UI表示层是 HTML5、JavaScript 和 CSS 的组合。 应用程序的最顶层是用户界面。界面的主要功能是将任务和结果转换为用户可以理…

人工智能导论-机器学习

机器学习概述 概述 本章主要介绍的机器学习的概念、发展历程、发展趋势、相关应用,着重拓展机监督学习和无监督学习的相关知识。 重点:机器学习的定义和应用; 难点:机器学习算法及分类。 机器学习 - 重要性 MachineLeaning出…

Java 网络编程(TCP编程 和 UDP编程)

1. Java 网络编程(TCP编程 和 UDP编程) 文章目录 1. Java 网络编程(TCP编程 和 UDP编程)2. 网络编程的概念3. IP 地址3.1 IP地址相关的:域名与DNS 4. 端口号(port)5. 通信协议5.1 通信协议相关的…

0718vscode问答

终于来到 qt # Question 多态 # Answer 多态是面向对象编程中的一个重要概念,指的是同一个接口可以有多种不同的实现方式。多态性允许我们使用一个统一的接口来处理不同类型的对象,从而提高代码的灵活性和可扩展性。 在Java中,多态可以通过以…

Gradio从入门到精通(9)---状态组件

文章目录 前言一、Error 组件初始化参数 二、Warning 组件初始化参数 三、Info 组件初始化参数 四、进度条(Progress bars)示例代码总结 前言 Gradio 提供了多种组件和功能,用于构建交互式界面和处理用户输入。以下是一些关键组件的使用和示…

Spring Boot集成syslog快速入门Demo

1.什么syslog? Syslog-ng是由Balabit IT Security Ltd.维护的一套开源的Unix和类Unix系统的日志服务套件。它是一个灵活的、可伸缩的系统日志记录程序。对于服务器日志集中收集,使用它是一个不错的解决方案。syslog-ng (syslog-Next generation) 是sysl…

<数据集>混凝土缺陷检测数据集<目标检测>

数据集格式:VOCYOLO格式 图片数量:7353张 标注数量(xml文件个数):7353 标注数量(txt文件个数):7353 标注类别数:6 标注类别名称:[exposed reinforcement, rust stain, Crack, Spalling, Efflorescence…

UniVue@v1.5.0版本发布:里程碑版本

前言 以后使用UniVue都推荐使用1.5.0以后的版本,这个版本之后,更新的速度将会放缓。 希望这个框架能够切实的帮助大家更好的开发游戏,做出一款好游戏!本开源项目采用的开源协议为MIT协议,完全开源化,以后也…

关于黑马商城微服务拆分

1.拆分流程 大差不差分为 创建module-依赖-启动类-配置yml文件-抽取代码-数据库-配置启动项-测试 2.微服务的好处 在测试的时候明显感觉到微服务的好处 不用启动所有的项目 只是单纯一个模块比如支付就可以自己调试 非常便捷而且易开发 抽取的公共模块api也不用启动就能测试 …

Python创建Excel表和读取Excel表的基础操作

下载openpyxl第三方库 winr打开命令行输入cmd 这个如果不行可以试试其他方法,在运行Python代码的软件里也有直接下载的地方,可以上网搜索 创建Excel表 示例代码:最后要记得保存,可以加一句提示语句。 import openpyxl lst[100,…

双非一本嵌入式方向怎么学?

双非一本(非“985”和“211”工程重点建设的本科院校)的学生在学习嵌入式方向时,可以通过以下步骤和策略来系统地学习和提升自己。我收集归类了一份嵌入式学习包,对于新手而言简直不要太棒,里面包括了新手各个时期的学…

基于HAL库的stm32的OLED显示屏显示(IIC)

OLED OLED,即有机发光二极管( Organic Light Emitting Diode )。OLED由于同时具备自发光,不需背光源、对比度高、厚度薄、视角广、反应速度快、可用于挠曲性面板、使用温度范围广、构造及制程较简单等优异之特性,被认为是下一代的平面显示器…