《昇思25天学习打卡营第24天| 文本解码原理》

news2025/1/8 5:06:51

文本解码原理--以MindNLP为例

回顾:自回归语言模型

根据前文预测下一个单词

一个文本序列的概率分布可以分解为每个词基于其上文的条件概率的乘积

  • 𝑊_0:初始上下文单词序列
  • 𝑇: 时间步
  • 当生成EOS标签时,停止生成。

MindNLP/huggingface Transformers提供的文本生成方法

Greedy search

在每个时间步𝑡都简单地选择概率最高的词作为当前输出词:

𝑤_𝑡=𝑎𝑟𝑔𝑚𝑎𝑥_𝑤 𝑃(𝑤|𝑤_(1:𝑡−1))

按照贪心搜索输出序列(“The”,“nice”,“woman”) 的条件概率为:0.5 x 0.4 = 0.2

缺点: 错过了隐藏在低概率词后面的高概率词,如:dog=0.5, has=0.9

在这里插入图片描述
环境准备

%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
!pip uninstall mindvision -y
!pip uninstall mindinsight -y
Found existing installation: mindvision 0.1.0
Uninstalling mindvision-0.1.0:
  Successfully uninstalled mindvision-0.1.0
[33mWARNING: Skipping mindinsight as it is not installed.[0m[33m
[0m
# 该案例在 mindnlp 0.3.1 版本完成适配,如果发现案例跑不通,可以指定mindnlp版本,执行`!pip install mindnlp==0.3.1`
!pip install mindnlp
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Collecting mindnlp
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/72/37/ef313c23fd587c3d1f46b0741c98235aecdfd93b4d6d446376f3db6a552c/mindnlp-0.3.1-py3-none-any.whl (5.7 MB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m5.7/5.7 MB[0m [31m8.1 MB/s[0m eta [36m0:00:00[0ma [36m0:00:01[0m
[?25hRequirement already satisfied: mindspore in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp) (2.2.14)
Requirement already satisfied: tqdm in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp) (4.66.4)
Requirement already satisfied: requests in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp) (2.32.3)
Collecting datasets (from mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/60/2d/963b266bb8f88492d5ab4232d74292af8beb5b6fdae97902df9e284d4c32/datasets-2.20.0-py3-none-any.whl (547 kB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m547.8/547.8 kB[0m [31m12.4 MB/s[0m eta [36m0:00:00[0ma [36m0:00:01[0m
[?25hCollecting evaluate (from mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/c2/d6/ff9baefc8fc679dcd9eb21b29da3ef10c81aa36be630a7ae78e4611588e1/evaluate-0.4.2-py3-none-any.whl (84 kB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m84.1/84.1 kB[0m [31m169.4 kB/s[0m eta [36m0:00:00[0ma [36m0:00:01[0m
[?25hCollecting tokenizers (from mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/ba/26/139bd2371228a0e203da7b3e3eddcb02f45b2b7edd91df00e342e4b55e13/tokenizers-0.19.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.6 MB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m3.6/3.6 MB[0m [31m7.5 MB/s[0m eta [36m0:00:00[0m00:01[0m00:01[0m
[?25hCollecting safetensors (from mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/c6/02/28e6280ed0f1bde89eed644b80f2ece4e5ae212dc9ee70d7f56fadc93602/safetensors-0.4.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m1.2/1.2 MB[0m [31m9.8 MB/s[0m eta [36m0:00:00[0ma [36m0:00:01[0mm
[?25hCollecting sentencepiece (from mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/a3/69/e96ef68261fa5b82379fdedb325ceaf1d353c6e839ec346d8244e0da5f2f/sentencepiece-0.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m1.3/1.3 MB[0m [31m9.8 MB/s[0m eta [36m0:00:00[0mta [36m0:00:01[0m
[?25hCollecting regex (from mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/70/70/fea4865c89a841432497d1abbfd53878513b55c6543245fabe31cf8df0b8/regex-2024.5.15-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (774 kB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m774.7/774.7 kB[0m [31m14.3 MB/s[0m eta [36m0:00:00[0ma [36m0:00:01[0m
[?25hCollecting addict (from mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/6a/00/b08f23b7d7e1e14ce01419a467b583edbb93c6cdb8654e54a9cc579cd61f/addict-2.4.0-py3-none-any.whl (3.8 kB)
Collecting ml-dtypes (from mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/50/96/13d7c3cc82d5ef597279216cf56ff461f8b57e7096a3ef10246a83ca80c0/ml_dtypes-0.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.2 MB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m2.2/2.2 MB[0m [31m11.8 MB/s[0m eta [36m0:00:00[0ma [36m0:00:01[0m
[?25hCollecting pyctcdecode (from mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/a5/8a/93e2118411ae5e861d4f4ce65578c62e85d0f1d9cb389bd63bd57130604e/pyctcdecode-0.5.0-py2.py3-none-any.whl (39 kB)
Collecting jieba (from mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/c6/cb/18eeb235f833b726522d7ebed54f2278ce28ba9438e3135ab0278d9792a2/jieba-0.42.1.tar.gz (19.2 MB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m19.2/19.2 MB[0m [31m9.3 MB/s[0m eta [36m0:00:00[0m00:01[0m00:01[0mm
[?25h  Preparing metadata (setup.py) ... [?25ldone
[?25hCollecting pytest==7.2.0 (from mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/67/68/a5eb36c3a8540594b6035e6cdae40c1ef1b6a2bfacbecc3d1a544583c078/pytest-7.2.0-py3-none-any.whl (316 kB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m316.8/316.8 kB[0m [31m14.2 MB/s[0m eta [36m0:00:00[0m
[?25hRequirement already satisfied: attrs>=19.2.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp) (23.2.0)
Requirement already satisfied: iniconfig in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp) (2.0.0)
Requirement already satisfied: packaging in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp) (23.2)
Requirement already satisfied: pluggy<2.0,>=0.12 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp) (1.5.0)
Requirement already satisfied: exceptiongroup>=1.0.0rc8 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp) (1.2.0)
Requirement already satisfied: tomli>=1.0.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp) (2.0.1)
Requirement already satisfied: filelock in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp) (3.15.3)
Requirement already satisfied: numpy>=1.17 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp) (1.26.4)
Collecting pyarrow>=15.0.0 (from datasets->mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/87/60/cc0645eb4ef73f88847e40a7f9d238bae6b7409d6c1f6a5d200d8ade1f09/pyarrow-16.1.0-cp39-cp39-manylinux_2_28_aarch64.whl (38.1 MB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m38.1/38.1 MB[0m [31m7.0 MB/s[0m eta [36m0:00:00[0m00:01[0m00:01[0m
[?25hCollecting pyarrow-hotfix (from datasets->mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/e4/f4/9ec2222f5f5f8ea04f66f184caafd991a39c8782e31f5b0266f101cb68ca/pyarrow_hotfix-0.6-py3-none-any.whl (7.9 kB)
Requirement already satisfied: dill<0.3.9,>=0.3.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp) (0.3.8)
Requirement already satisfied: pandas in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp) (2.2.2)
Collecting xxhash (from datasets->mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/7c/b9/93f860969093d5d1c4fa60c75ca351b212560de68f33dc0da04c89b7dc1b/xxhash-3.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (220 kB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m220.6/220.6 kB[0m [31m5.5 MB/s[0m eta [36m0:00:00[0ma [36m0:00:01[0m
[?25hCollecting multiprocess (from datasets->mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/da/d9/f7f9379981e39b8c2511c9e0326d212accacb82f12fbfdc1aa2ce2a7b2b6/multiprocess-0.70.16-py39-none-any.whl (133 kB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m133.4/133.4 kB[0m [31m10.6 MB/s[0m eta [36m0:00:00[0m
[?25hCollecting fsspec<=2024.5.0,>=2023.1.0 (from fsspec[http]<=2024.5.0,>=2023.1.0->datasets->mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/ba/a3/16e9fe32187e9c8bc7f9b7bcd9728529faa725231a0c96f2f98714ff2fc5/fsspec-2024.5.0-py3-none-any.whl (316 kB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m316.1/316.1 kB[0m [31m6.0 MB/s[0m eta [36m0:00:00[0ma [36m0:00:01[0m
[?25hCollecting aiohttp (from datasets->mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/eb/45/eebe8d2215328434f33ccb44a05d2741ff7ed4b96b56ca507e2ecf598b73/aiohttp-3.9.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m1.2/1.2 MB[0m [31m7.8 MB/s[0m eta [36m0:00:00[0ma [36m0:00:01[0mm
[?25hRequirement already satisfied: huggingface-hub>=0.21.2 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp) (0.23.4)
Requirement already satisfied: pyyaml>=5.1 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp) (6.0.1)
Requirement already satisfied: charset-normalizer<4,>=2 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from requests->mindnlp) (3.3.2)
Requirement already satisfied: idna<4,>=2.5 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from requests->mindnlp) (3.7)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from requests->mindnlp) (2.2.2)
Requirement already satisfied: certifi>=2017.4.17 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from requests->mindnlp) (2024.6.2)
Requirement already satisfied: protobuf>=3.13.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore->mindnlp) (5.27.1)
Requirement already satisfied: asttokens>=2.0.4 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore->mindnlp) (2.0.5)
Requirement already satisfied: pillow>=6.2.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore->mindnlp) (10.3.0)
Requirement already satisfied: scipy>=1.5.4 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore->mindnlp) (1.13.1)
Requirement already satisfied: psutil>=5.6.1 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore->mindnlp) (5.9.0)
Requirement already satisfied: astunparse>=1.6.3 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore->mindnlp) (1.6.3)
Collecting pygtrie<3.0,>=2.1 (from pyctcdecode->mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/ec/cd/bd196b2cf014afb1009de8b0f05ecd54011d881944e62763f3c1b1e8ef37/pygtrie-2.5.0-py3-none-any.whl (25 kB)
Collecting hypothesis<7,>=6.14 (from pyctcdecode->mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/6c/f7/66279227de1a500724e90ef11d0f47a21342454e50acf50ee0148e9eda00/hypothesis-6.108.2-py3-none-any.whl (465 kB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m465.2/465.2 kB[0m [31m8.7 MB/s[0m eta [36m0:00:00[0ma [36m0:00:01[0m
[?25hRequirement already satisfied: six in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from asttokens>=2.0.4->mindspore->mindnlp) (1.16.0)
Requirement already satisfied: wheel<1.0,>=0.23.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from astunparse>=1.6.3->mindspore->mindnlp) (0.43.0)
Collecting aiosignal>=1.1.2 (from aiohttp->datasets->mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/76/ac/a7305707cb852b7e16ff80eaf5692309bde30e2b1100a1fcacdc8f731d97/aiosignal-1.3.1-py3-none-any.whl (7.6 kB)
Collecting frozenlist>=1.1.1 (from aiohttp->datasets->mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/57/15/172af60c7e150a1d88ecc832f2590721166ae41eab582172fe1e9844eab4/frozenlist-1.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (239 kB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m239.4/239.4 kB[0m [31m8.5 MB/s[0m eta [36m0:00:00[0m
[?25hCollecting multidict<7.0,>=4.5 (from aiohttp->datasets->mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/d0/10/2ff646c471e84af25fe8111985ffb8ec85a3f6e1ade8643bfcfcc0f4d2b1/multidict-6.0.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (125 kB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m125.9/125.9 kB[0m [31m9.0 MB/s[0m eta [36m0:00:00[0m
[?25hCollecting yarl<2.0,>=1.0 (from aiohttp->datasets->mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/c6/d6/5b30ae1d8a13104ee2ceb649f28f2db5ad42afbd5697fd0fc61528bb112c/yarl-1.9.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (300 kB)
[2K     [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m300.9/300.9 kB[0m [31m6.5 MB/s[0m eta [36m0:00:00[0ma [36m0:00:01[0m
[?25hCollecting async-timeout<5.0,>=4.0 (from aiohttp->datasets->mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/a7/fa/e01228c2938de91d47b307831c62ab9e4001e747789d0b05baf779a6488c/async_timeout-4.0.3-py3-none-any.whl (5.7 kB)
Requirement already satisfied: typing-extensions>=3.7.4.3 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from huggingface-hub>=0.21.2->datasets->mindnlp) (4.11.0)
Collecting sortedcontainers<3.0.0,>=2.1.0 (from hypothesis<7,>=6.14->pyctcdecode->mindnlp)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/32/46/9cb0e58b2deb7f82b84065f37f3bffeb12413f947f9388e4cac22c4621ce/sortedcontainers-2.4.0-py2.py3-none-any.whl (29 kB)
Requirement already satisfied: python-dateutil>=2.8.2 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pandas->datasets->mindnlp) (2.9.0.post0)
Requirement already satisfied: pytz>=2020.1 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pandas->datasets->mindnlp) (2024.1)
Requirement already satisfied: tzdata>=2022.7 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pandas->datasets->mindnlp) (2024.1)
Building wheels for collected packages: jieba
  Building wheel for jieba (setup.py) ... [?25ldone
[?25h  Created wheel for jieba: filename=jieba-0.42.1-py3-none-any.whl size=19314459 sha256=107f32c8ef152ee9014c980e99beb8179acca866ca882ea0e4a5f1f31cbe844a
  Stored in directory: /home/nginx/.cache/pip/wheels/1a/76/68/b6d79c4db704bb18d54f6a73ab551185f4711f9730c0c15d97
Successfully built jieba
Installing collected packages: sortedcontainers, sentencepiece, pygtrie, jieba, addict, xxhash, safetensors, regex, pytest, pyarrow-hotfix, pyarrow, multiprocess, multidict, ml-dtypes, hypothesis, fsspec, frozenlist, async-timeout, yarl, pyctcdecode, aiosignal, tokenizers, aiohttp, datasets, evaluate, mindnlp
  Attempting uninstall: pytest
    Found existing installation: pytest 8.0.0
    Uninstalling pytest-8.0.0:
      Successfully uninstalled pytest-8.0.0
  Attempting uninstall: fsspec
    Found existing installation: fsspec 2024.6.0
    Uninstalling fsspec-2024.6.0:
      Successfully uninstalled fsspec-2024.6.0
Successfully installed addict-2.4.0 aiohttp-3.9.5 aiosignal-1.3.1 async-timeout-4.0.3 datasets-2.20.0 evaluate-0.4.2 frozenlist-1.4.1 fsspec-2024.5.0 hypothesis-6.108.2 jieba-0.42.1 mindnlp-0.3.1 ml-dtypes-0.4.0 multidict-6.0.5 multiprocess-0.70.16 pyarrow-16.1.0 pyarrow-hotfix-0.6 pyctcdecode-0.5.0 pygtrie-2.5.0 pytest-7.2.0 regex-2024.5.15 safetensors-0.4.3 sentencepiece-0.2.0 sortedcontainers-2.4.0 tokenizers-0.19.1 xxhash-3.4.1 yarl-1.9.4

[1m[[0m[34;49mnotice[0m[1;39;49m][0m[39;49m A new release of pip is available: [0m[31;49m24.1[0m[39;49m -> [0m[32;49m24.1.2[0m
[1m[[0m[34;49mnotice[0m[1;39;49m][0m[39;49m To update, run: [0m[32;49mpython -m pip install --upgrade pip[0m
#greedy_search

from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModel

tokenizer = GPT2Tokenizer.from_pretrained("iiBcai/gpt2", mirror='modelscope')

# add the EOS token as PAD token to avoid warnings
model = GPT2LMHeadModel.from_pretrained("iiBcai/gpt2", pad_token_id=tokenizer.eos_token_id, mirror='modelscope')

# encode context the generation is conditioned on
input_ids = tokenizer.encode('I enjoy walking with my cute dog', return_tensors='ms')

# generate text until the output length (which includes the context length) reaches 50
greedy_output = model.generate(input_ids, max_length=50)

print("Output:\n" + 100 * '-')
print(tokenizer.decode(greedy_output[0], skip_special_tokens=True))
Building prefix dict from the default dictionary ...
Dumping model to file cache /tmp/jieba.cache
Loading model cost 1.018 seconds.
Prefix dict has been built successfully.



  0%|          | 0.00/26.0 [00:00<?, ?B/s]



  0%|          | 0.00/0.99M [00:00<?, ?B/s]



  0%|          | 0.00/446k [00:00<?, ?B/s]



  0%|          | 0.00/1.29M [00:00<?, ?B/s]



  0%|          | 0.00/665 [00:00<?, ?B/s]



  0%|          | 0.00/523M [00:00<?, ?B/s]


Output:
----------------------------------------------------------------------------------------------------
I enjoy walking with my cute dog, but I'm not sure if I'll ever be able to walk with my dog. I'm not sure if I'll ever be able to walk with my dog.

I'm not sure if I'll

Beam search

Beam search通过在每个时间步保留最可能的 num_beams 个词,并从中最终选择出概率最高的序列来降低丢失潜在的高概率序列的风险。如图以 num_beams=2 为例:

(“The”,“dog”,“has”) : 0.4 * 0.9 = 0.36

(“The”,“nice”,“woman”) : 0.5 * 0.4 = 0.20

优点:一定程度保留最优路径

缺点:1. 无法解决重复问题;2. 开放域生成效果差
在这里插入图片描述

from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModel

tokenizer = GPT2Tokenizer.from_pretrained("iiBcai/gpt2", mirror='modelscope')

# add the EOS token as PAD token to avoid warnings
model = GPT2LMHeadModel.from_pretrained("iiBcai/gpt2", pad_token_id=tokenizer.eos_token_id, mirror='modelscope')

# encode context the generation is conditioned on
input_ids = tokenizer.encode('I enjoy walking with my cute dog', return_tensors='ms')

# activate beam search and early_stopping
beam_output = model.generate(
    input_ids, 
    max_length=50, 
    num_beams=5, 
    early_stopping=True
)

print("Output:\n" + 100 * '-')
print(tokenizer.decode(beam_output[0], skip_special_tokens=True))
print(100 * '-')

# set no_repeat_ngram_size to 2
beam_output = model.generate(
    input_ids, 
    max_length=50, 
    num_beams=5, 
    no_repeat_ngram_size=2, 
    early_stopping=True
)

print("Beam search with ngram, Output:\n" + 100 * '-')
print(tokenizer.decode(beam_output[0], skip_special_tokens=True))
print(100 * '-')

# set return_num_sequences > 1
beam_outputs = model.generate(
    input_ids, 
    max_length=50, 
    num_beams=5, 
    no_repeat_ngram_size=2, 
    num_return_sequences=5, 
    early_stopping=True
)

# now we have 3 output sequences
print("return_num_sequences, Output:\n" + 100 * '-')
for i, beam_output in enumerate(beam_outputs):
    print("{}: {}".format(i, tokenizer.decode(beam_output, skip_special_tokens=True)))
print(100 * '-')

Output:
----------------------------------------------------------------------------------------------------
I enjoy walking with my cute dog, but I don't think I'll ever be able to walk with her again."

"I don't think I'll ever be able to walk with her again."

"I don't think I
----------------------------------------------------------------------------------------------------
Beam search with ngram, Output:
----------------------------------------------------------------------------------------------------
I enjoy walking with my cute dog, but I don't think I'll ever be able to walk with her again."

"I'm not sure what to say to that," she said. "I mean, it's not like I'm
----------------------------------------------------------------------------------------------------
return_num_sequences, Output:
----------------------------------------------------------------------------------------------------
0: I enjoy walking with my cute dog, but I don't think I'll ever be able to walk with her again."

"I'm not sure what to say to that," she said. "I mean, it's not like I'm
1: I enjoy walking with my cute dog, but I don't think I'll ever be able to walk with her again."

"I'm not sure what to say to that," she said. "I mean, it's not like she's
2: I enjoy walking with my cute dog, but I don't think I'll ever be able to walk with her again."

"I'm not sure what to say to that," she said. "I mean, it's not like we're
3: I enjoy walking with my cute dog, but I don't think I'll ever be able to walk with her again."

"I'm not sure what to say to that," she said. "I mean, it's not like I've
4: I enjoy walking with my cute dog, but I don't think I'll ever be able to walk with her again."

"I'm not sure what to say to that," she said. "I mean, it's not like I can
----------------------------------------------------------------------------------------------------

Beam search issues
在这里插入图片描述
在这里插入图片描述

缺点:1. 无法解决重复问题;2. 开放域生成效果差

Repeat problem
n-gram 惩罚:

将出现过的候选词的概率设置为 0

设置no_repeat_ngram_size=2 ,任意 2-gram 不会出现两次

Notice: 实际文本生成需要重复出现

Sample

根据当前条件概率分布随机选择输出词𝑤_𝑡
(“car”) ~P(w∣"The")
(“drives”) ~P(w∣"The",“car”)
优点:文本生成多样性高

缺点:生成文本不连续

import mindspore
from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModel

tokenizer = GPT2Tokenizer.from_pretrained("iiBcai/gpt2", mirror='modelscope')

# add the EOS token as PAD token to avoid warnings
model = GPT2LMHeadModel.from_pretrained("iiBcai/gpt2", pad_token_id=tokenizer.eos_token_id, mirror='modelscope')

# encode context the generation is conditioned on
input_ids = tokenizer.encode('I enjoy walking with my cute dog', return_tensors='ms')

mindspore.set_seed(0)
# activate sampling and deactivate top_k by setting top_k sampling to 0
sample_output = model.generate(
    input_ids, 
    do_sample=True, 
    max_length=50, 
    top_k=0
)

print("Output:\n" + 100 * '-')
print(tokenizer.decode(sample_output[0], skip_special_tokens=True))
Output:
----------------------------------------------------------------------------------------------------
I enjoy walking with my cute dog Neddy as much as I'd like. Keep up the good work Neddy!"

I realized what Neddy meant when he first launched the website. "Thank you so much for joining."

I

Temperature
降低softmax 的temperature使 P(w∣w1:t−1​)分布更陡峭

增加高概率单词的似然并降低低概率单词的似然

import mindspore
from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModel

tokenizer = GPT2Tokenizer.from_pretrained("iiBcai/gpt2", mirror='modelscope')

# add the EOS token as PAD token to avoid warnings
model = GPT2LMHeadModel.from_pretrained("iiBcai/gpt2", pad_token_id=tokenizer.eos_token_id, mirror='modelscope')

# encode context the generation is conditioned on
input_ids = tokenizer.encode('I enjoy walking with my cute dog', return_tensors='ms')

mindspore.set_seed(1234)
# activate sampling and deactivate top_k by setting top_k sampling to 0
sample_output = model.generate(
    input_ids, 
    do_sample=True, 
    max_length=50, 
    top_k=0,
    temperature=0.7
)

print("Output:\n" + 100 * '-')
print(tokenizer.decode(sample_output[0], skip_special_tokens=True))
Output:
----------------------------------------------------------------------------------------------------
I enjoy walking with my cute dog and have never had a problem with her until now.

A large dog named Chucky managed to get a few long stretches of grass on her back and ran around with it for about 5 minutes, ran around

TopK sample

选出概率最大的 K 个词,重新归一化,最后在归一化后的 K 个词中采样

TopK sample problems

将采样池限制为固定大小 K :

  • 在分布比较尖锐的时候产生胡言乱语
  • 在分布比较平坦的时候限制模型的创造力
import mindspore
from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModel

tokenizer = GPT2Tokenizer.from_pretrained("iiBcai/gpt2", mirror='modelscope')

# add the EOS token as PAD token to avoid warnings
model = GPT2LMHeadModel.from_pretrained("iiBcai/gpt2", pad_token_id=tokenizer.eos_token_id, mirror='modelscope')

# encode context the generation is conditioned on
input_ids = tokenizer.encode('I enjoy walking with my cute dog', return_tensors='ms')

mindspore.set_seed(0)
# activate sampling and deactivate top_k by setting top_k sampling to 0
sample_output = model.generate(
    input_ids, 
    do_sample=True, 
    max_length=50, 
    top_k=50
)

print("Output:\n" + 100 * '-')
print(tokenizer.decode(sample_output[0], skip_special_tokens=True))
Output:
----------------------------------------------------------------------------------------------------
I enjoy walking with my cute dog.

She's always up for some action, so I have seen her do some stuff with it.

Then there's the two of us.

The two of us I'm talking about were

Top-P sample

在累积概率超过概率 p 的最小单词集中进行采样,重新归一化

![外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传](https://img-
采样池可以根据下一个词的概率分布动态增加和减少

import mindspore
from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModel

tokenizer = GPT2Tokenizer.from_pretrained("iiBcai/gpt2", mirror='modelscope')

# add the EOS token as PAD token to avoid warnings
model = GPT2LMHeadModel.from_pretrained("iiBcai/gpt2", pad_token_id=tokenizer.eos_token_id, mirror='modelscope')

# encode context the generation is conditioned on
input_ids = tokenizer.encode('I enjoy walking with my cute dog', return_tensors='ms')

mindspore.set_seed(0)

# deactivate top_k sampling and sample only from 92% most likely words
sample_output = model.generate(
    input_ids, 
    do_sample=True, 
    max_length=50, 
    top_p=0.92, 
    top_k=0
)

print("Output:\n" + 100 * '-')
print(tokenizer.decode(sample_output[0], skip_special_tokens=True))
Output:
----------------------------------------------------------------------------------------------------
I enjoy walking with my cute dog Neddy as much as I'd like. Keep up the good work Neddy!"

I realized what Neddy meant when he first launched the website. "Thank you so much for joining."

I

top_k_top_p

import mindspore
from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModel

tokenizer = GPT2Tokenizer.from_pretrained("iiBcai/gpt2", mirror='modelscope')

# add the EOS token as PAD token to avoid warnings
model = GPT2LMHeadModel.from_pretrained("iiBcai/gpt2", pad_token_id=tokenizer.eos_token_id, mirror='modelscope')

# encode context the generation is conditioned on
input_ids = tokenizer.encode('I enjoy walking with my cute dog', return_tensors='ms')

mindspore.set_seed(0)
# set top_k = 50 and set top_p = 0.95 and num_return_sequences = 3
sample_outputs = model.generate(
    input_ids,
    do_sample=True,
    max_length=50,
    top_k=5,
    top_p=0.95,
    num_return_sequences=3
)

print("Output:\n" + 100 * '-')
for i, sample_output in enumerate(sample_outputs):
  print("{}: {}".format(i, tokenizer.decode(sample_output, skip_special_tokens=True)))
Output:
----------------------------------------------------------------------------------------------------
0: I enjoy walking with my cute dog.

"My dog loves the smell of the dog. I'm so happy that she's happy with me.

"I love to walk with my dog. I'm so happy that she's happy
1: I enjoy walking with my cute dog. I'm a big fan of my cat and her dog, but I don't have the same enthusiasm for her. It's hard not to like her because it is my dog.

My husband, who
2: I enjoy walking with my cute dog, but I'm also not sure I would want my dog to walk alone with me."

She also told The Daily Beast that the dog is very protective.

"I think she's very protective of

心得

1、基于N-gram或者其他的都是概率模型, N-gram模型对训练数据的需求较少,但对数据的覆盖性要求高。GPT则需要大量的训练数据和计算资源来获得良好的性能。
2、除了N-gram和GPT,还有其他类型的概率模型用于自然语言处理,例如:
隐马尔可夫模型(HMM): 用于序列标注任务,例如语音识别和机器翻译。
条件随机场(CRF): 用于序列标注任务,能够更好地处理局部特征和全局依赖关系。
贝叶斯网络: 用于文本分类和关系抽取等任务,能够表示文本中的知识和推理关系。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1933085.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringBoot框架学习笔记(二):容器功能相关注解详解

1 Spring 注入组件的注解 Component、Controller、 Service、Repository这些在 Spring 中的传统注解仍然有效&#xff0c;通过这些注解可以给容器注入组件 2 Configuration 2.1 应用实例 需求说明: 演示在 SpringBoot, 如何通过Configuration 创建配置类来注入组件 回顾…

少儿编程启蒙宝典:Scratch动画游戏108变

一、编程教育的时代价值与意义 随着数字时代的深入发展&#xff0c;社会对人才的需求正发生深刻变革&#xff0c;计算思维与编程能力已成为衡量个人竞争力的重要指标。在此背景下&#xff0c;培养孩子们运用计算思维解决实际问题的能力&#xff0c;成为教育领域的重要任务。编…

【PPT笔记】1-3节 | 默认设置/快捷键/合并形状

文章目录 说明笔记1 默认设置1.1 OFFICE版本选择1.1.1 Office某某数字专属系列1.1.2 Office3651.1.3 产品信息怎么看 1.2 默认设置1.2.1 暗夜模式1.2.2 无限撤回1.2.3 自动保存&#xff08;Office2013版本及以上&#xff09;1.2.4 图片压缩1.2.5 字体嵌入1.2.6 多格式导出1.2.7…

C++ | Leetcode C++题解之第235题二叉搜索树的最近公共祖先

题目&#xff1a; 题解&#xff1a; class Solution { public:TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {TreeNode* ancestor root;while (true) {if (p->val < ancestor->val && q->val < ancestor->val) {anc…

音视频开发入门教程(2)配置FFmpeg编译 ~共210节

在上一篇博客介绍了安装&#xff0c;音视频开发入门教程&#xff08;1&#xff09;如何安装FFmpeg&#xff1f;共210节-CSDN博客 感兴趣的小伙伴&#xff0c;可以继续跟着老铁&#xff0c;一起开始音视频剪辑功能&#xff0c;&#x1f604;首先查看一下自己的电脑是几核的&…

《昇思25天学习打卡营第20天|GAN图像生成》

生成对抗网络&#xff08;GAN&#xff09;是一种深度学习模型&#xff0c;用于生成逼真的图像。在手写数字识别的任务中&#xff0c;GAN 可以用来生成与真实手写数字相似的图像&#xff0c;以增强模型的训练数据集。GAN 主要由两个部分组成&#xff1a;生成器&#xff08;Gener…

httpx 的使用

httpx 是一个可以支持 HTTP/2.0 的库 还有一个是&#xff1a; hyper 库 这里有一个由HTTP/2.0的网站&#xff1a; https://spa16.scrape.center/ 使用 requests 库 进行爬取 import requests url https://spa16.scrape.center/ response requests.get(url) print(response…

Lua基础知识入门

1 基础知识 标识符&#xff1a;标识符的定义和 C语言相同&#xff1a;字母和下划线_ 开头&#xff0c; 下划线_ 大写字母一般是lua保留字&#xff0c; 如_VERSION 全局变量&#xff1a;默认情况下&#xff0c;变量总是认为是全局的&#xff0c;不需要申明&#xff0c;给一个变…

28_EfficientNetV2网络详解

V1&#xff1a;https://blog.csdn.net/qq_51605551/article/details/140487051?spm1001.2014.3001.5502 1.1 简介 EfficientNetV2是Google研究人员Mingxing Tan和Quoc V. Le等人在2021年提出的一种深度学习模型&#xff0c;它是EfficientNet系列的最新迭代&#xff0c;旨在提…

golang单元测试性能测试常见用法

关于go test的一些说明 golang安装后可以使用go test工具进行单元测试 代码片段对比的性能测试,使用起来还是比较方便,下面是一些应用场景 平时自己想做一些简单函数的单元测试&#xff0c;不用每次都新建一个main.go 然后go run main.go相对某个功能做下性能测试 看下cpu/内存…

Anthropic推出1亿美元AI基金,加剧与OpenAI的竞争|TodayAI

人工智能初创公司Anthropic和风险投资公司Menlo Ventures宣布&#xff0c;他们将共同推出一支价值1亿美元的基金&#xff0c;以支持早期初创公司并推动它们使用Anthropic的技术。这个名为Anthology Fund的新基金&#xff0c;将为初创公司提供资金和技术支持&#xff0c;旨在模仿…

三、GPIO口

我们在刚接触C语言时&#xff0c;写的第一个程序必定是hello world&#xff0c;其他的编程语言也是这样类似的代码是告诉我们进入了编程的世界&#xff0c;在单片机中也不例外&#xff0c;不过我们的传统就是点亮第一个LED灯&#xff0c;点亮电阻&#xff0c;电容的兄弟&#x…

锁策略和CAS指令

锁策略 一、锁策略的引入二、锁策略的分类&#xff08;1&#xff09;乐观锁和悲观锁&#xff08;2&#xff09;重量级锁和轻量级锁&#xff08;3&#xff09; 自旋锁和挂起等待锁&#xff08;4&#xff09;可重入锁和不可重入锁&#xff08;5&#xff09;公平锁和非公平锁&…

SQL面试题练习 —— 统计最大连续登录天数区间

目录 1 题目2 建表语句3 题解 1 题目 2 建表语句 CREATE TABLE IF NOT EXISTS user_login_tb (uid INT,login_date DATE ); insert into user_login_tb(uid, login_date) values( 1, 2022-08-02),(1, 2022-08-03),(2, 2022-08-03),(2, 2022-08-04),(2, 2022-08-05),(2, 2022-08…

使用Python的Turtle模块绘制小黄人

引言 在Python编程的世界里&#xff0c;turtle 模块是一个非常有趣且实用的工具&#xff0c;它允许程序员通过简单的指令控制一个虚拟的画笔&#xff08;称为“海龟”&#xff09;在屏幕上移动和绘制图形。本篇博客将详细介绍如何使用turtle模块来绘制一个卡通人物&#xff0c…

Redis-布隆过滤器(Bloom Filter)详解

文章目录 什么是布隆过滤器 布隆过滤器的优点&#xff1a;布隆过滤器的缺点&#xff1a;其他问题 布隆过滤器适合的场景布隆过滤器原理 数据结构增加元素查询元素删除元素 如何使用布隆过滤器 Google开源的Guava自带布隆过滤器Redis实现布隆过滤器 Redis中配置布隆过滤器Redis…

给Wordpress添加评分功能到评论表单

今天要 给你的 Wordpress 添加评分功能到评论表单 吗&#xff1f; 评分功能效果图 什么类型的网站需要评分&#xff1f; 资源站教程站其他&#xff0c;我也没想到。。。 但我这个网站&#xff0c;因为是电影类的网站&#xff0c;好像还是有点需要的&#xff0c;所以&#xf…

完美的用户体验:如何设计一个直观和有效的网站导航?

APP的顶部导航栏对我们来说很熟悉。导航栏是UI设计中不可或缺的一部分&#xff0c;几乎每个页面都使用导航栏。虽然导航栏看起来很简单&#xff0c;不需要太多精力&#xff0c;但是设计一个与产品需求和客户目标高度匹配的导航栏并不是那么容易的。导航栏的设计标准有很多细节需…

SpringBoot集成MQTT实现交互服务通信

引言 本文是springboot集成mqtt的一个实战案例。 gitee代码库地址&#xff1a;源码地址 一、什么是MQTT MQTT&#xff08;Message Queuing Telemetry Transport&#xff0c;消息队列遥测传输协议&#xff09;&#xff0c;是一种基于发布/订阅&#xff08;publish/subscribe&…

C++ : 移除链表元素/合并两个有序链表题解

目录 1.移除链表元素 分析 代码 2.合并两个有序链表 分析 代码 1.移除链表元素 分析 像这种移除元素的&#xff0c;加个哨兵位头节点会比较方便&#xff0c;因为旧的头会有被移除的情况&#xff0c;不好控制。这里只需要用cur指向待遍历的节点&#xff0c;prev指向cur的…