【DGL系列】DGLGraph.out_edges简介

news2024/9/22 23:23:14

转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn]

如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~


目录

函数说明

用法示例

示例 1: 获取所有边的源节点和目标节点

示例 2: 获取特定节点的出边

示例 3: 获取所有边的边ID

示例 4: 获取所有信息(源节点、目标节点和边ID)

示例 5: 对于有多种边缘类型的图形,需要在查询中指定边的类型

示例 6:对于无向图,则边是双向的


dgl.DGLGraph.out_edges — DGL 2.3 documentation

函数说明

  dgl.DGLGraph.out_edges 是 DGL(Deep Graph Library)中的一个方法,用于获取图中所有边的源节点和目标节点。这个方法可以用于返回整个图的边,也可以通过传入指定的节点来获取从这些节点出发的边。

DGLGraph.out_edges(u=ALL, etype=None, form='uv')

参数

  • u(节点ID):

    • 可以是 单个节点ID(整数)。
    • 可以是 节点ID的张量(Int Tensor),每个元素是一个节点ID。张量的设备类型和ID数据类型必须与图的相同。
    • 可以是 可迭代的节点ID列表(iterable[int]),每个元素是一个节点ID。
  • form(字符串,可选):

    • 'eid': 返回1D张量,表示所有边的ID。
    • 'uv'(默认): 返回一个2元组(1D张量),分别表示所有边的源节点和目标节点。
    • 'all': 返回一个3元组(1D张量),分别表示所有边的源节点、目标节点和边ID。
  • etype(字符串或(字符串, 字符串, 字符串),可选):

    • 边的类型名称。格式可以是 (源节点类型, 边类型, 目标节点类型)。
    • 或者是一个唯一标识三元组格式的字符串类型名称。如果图中只有一种类型的边,可以省略。

返回值

  • 返回所有指定类型节点的出边。返回形式取决于 form 参数的值。
    • 'eid': 返回一个1D张量,表示所有边的ID。
    • 'uv': 返回一个2元组(1D张量),分别表示所有边的源节点和目标节点。
    • 'all': 返回一个3元组(1D张量),分别表示所有边的源节点、目标节点和边ID。

用法示例

我们创建一个如图所示的简单的graph:

示例 1: 获取所有边的源节点和目标节点

import dgl
import torch

# 创建一个简单的图,包含4个节点和4条边
u = torch.tensor([0, 0, 1, 2])
v = torch.tensor([1, 2, 3, 3])
graph = dgl.graph((u, v))

# 获取所有边的源节点和目标节点
src, dst = graph.out_edges(graph.nodes())

print("源节点:", src)
print("目标节点:", dst)

# 源节点: tensor([0, 0, 1, 2])
# 目标节点: tensor([1, 2, 3, 3])

示例 2: 获取特定节点的出边

# 获取节点0和节点1的出边
nodes = torch.tensor([0, 1])
src, dst = graph.out_edges(nodes)

print("源节点:", src)
print("目标节点:", dst)

# 源节点: tensor([0, 0, 1])
# 目标节点: tensor([1, 2, 3])

示例 3: 获取所有边的边ID

# 获取所有边的边ID
edge_ids = graph.out_edges(graph.nodes(), form='eid')

print("边ID:", edge_ids)

# 边ID: tensor([0, 1, 2, 3])

示例 4: 获取所有信息(源节点、目标节点和边ID)

# 获取所有边的源节点、目标节点和边ID
src, dst, eid = graph.out_edges(graph.nodes(), form='all')

print("源节点:", src)
print("目标节点:", dst)
print("边ID:", eid)

# 源节点: tensor([0, 0, 1, 2])
# 目标节点: tensor([1, 2, 3, 3])
# 边ID: tensor([0, 1, 2, 3])

示例 5: 对于有多种边缘类型的图形,需要在查询中指定边的类型

hg = dgl.heterograph({
    ('user', 'follows', 'user'): (torch.tensor([0, 1]), torch.tensor([1, 2])),
    ('user', 'plays', 'game'): (torch.tensor([3, 4]), torch.tensor([5, 6]))
})
hg.out_edges(torch.tensor([1, 2]), etype='follows')

# (tensor([1]), tensor([2]))

示例 6:对于无向图,则边是双向的

注意:在dgl的图中,所有边都是有向的,如果要创建无向图,需要创建双向边。

import dgl
import torch

# 创建一个无向图,包含4个节点和4条边
u = torch.tensor([0, 0, 1, 2])
v = torch.tensor([1, 2, 3, 3])

# 创建双向边以模拟无向图
u_bi = torch.cat([u, v])
v_bi = torch.cat([v, u])

graph = dgl.graph((u_bi, v_bi))
# 简化图
graph = dgl.to_simple(graph)

# 获取节点的出边
src, dst = graph.out_edges([1, 3])

print("源节点:", src)
print("目标节点:", dst)

# 源节点: tensor([1, 1, 3, 3])
# 目标节点: tensor([3, 0, 1, 2])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1932705.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【概率论三】参数估计:点估计(矩估计、极大似然法)、区间估计

文章目录 一. 点估计1. 矩估计法2. 极大似然法2.1. 似然函数2.2. 极大似然估计法 3. 评价估计量的标准3.1. 无偏性3.2. 有效性3.3. 一致性 二. 区间估计1. 区间估计的概念2. 正态总体参数的区间估计 参数估计讲什么 由样本来确定未知参数参数估计分为点估计与区间估计 一. 点估…

Ubuntu20.04从零开搭PX4MavrosGazebo环境并测试

仅仅是个人搭建记录 参考链接: https://zhuanlan.zhihu.com/p/686439920 仿真平台基础配置(对应PX4 1.13版) 语雀 mkdir -p ~/tzb/catkin_ws/src mkdir -p ~/tzb/catkin_ws/scripts cd catkin_ws && catkin init catkin build cd…

ECMP等价多路由机制,大模型训练负载均衡流量极化冲突原因,万卡(大规模)集群语言模型(LLM)训练流量拥塞特点

大规模集群,大语言模型(LLM)训练流量特点,ECMP(Equal-Cost Multi-Path Routing)流量极化拥塞原因。 视频分享在这: 2.1 ECMP等价多路由,大模型训练流量特点,拥塞冲突极化产生原因_哔哩哔哩_bi…

【GraphRAG】微软 graphrag 效果实测

GraphRAG 本文将基于以下来源,对Microsoft GraphRAG分析优缺点、以及示例实测分析。 1. Source 代码仓库: Welcome to GraphRAGhttps://microsoft.github.io/graphrag/ 微软文章1(2024.2.13):GraphRAG: Unlocking…

电脑系统重装数据被格式化,那些文件还有办法恢复吗?

在日常使用电脑的过程中,系统重装或格式化操作是常见的维护手段,尤其是在遇到系统崩溃、病毒感染或需要升级系统时。然而,这一操作往往伴随着数据丢失的风险,尤其是当C盘(系统盘)和D盘(或其他数…

【linux】信号的理论概述和实操

目录 理论篇 信号概述 信号的分类 信号机制 理解硬件中断 异步 信号对应的三种动作 信号产生的条件 终端按键 系统调用 软件条件 硬件异常 除0错误 野指针 OS对于错误的态度 信号在进程中的内核数据结构 信号的处理 CPU的内核态和用户态概述 进程处理信号的时…

MATLAB科研数据可视化教程

原文链接:MATLAB科研数据可视化https://mp.weixin.qq.com/s?__bizMzUzNTczMDMxMg&mid2247609462&idx3&snf7043936fc5ee42b833c7c9f3bcd24ba&chksmfa826d91cdf5e4872eb275e5319b66ba6927ea0074fb2293fe1ca47d6aedf38ab91050be484c&token1551213…

FPGA 实现DDR4的读写

1 硬件设计 FPGA 端: DDR4: 2 验证方案 3 仿真验证 4 DDR4 下板验证

Qt模型/视图架构——委托(delegate)

一、为什么需要委托 模型(model)用来数据存储,视图(view)用来展示数据。因此,模型/视图架构是一种将数据存储和界面展示分离的编程方法。具体如下图所示: 由图可知,模型向视图提供数…

鼠标的发明和鼠标“变形记”

注:机翻,未校对。 Who Invented the Computer Mouse? 谁发明了电脑鼠标? It was technology visionary and inventor Douglas Engelbart (January 30, 1925 – July 2, 2013) who revolutionized the way computers worked, turning it fr…

【unity实战】使用unity制作一个红点系统

前言 注意,本文是本人的学习笔记记录,这里先记录基本的代码,后面用到了再回来进行实现和整理 素材 https://assetstore.unity.com/packages/2d/gui/icons/2d-simple-ui-pack-218050 框架: RedPointSystem.cs using System.…

Jmeter关联

案例脚本实现:选择商品加入购物车 客户端发送一个登录的HTTP请求,服务端返回一个带着token的响应,后续发出一个带token信息的加入购物车的HTTP请求,返回响应。 关联:当请求直接由依赖关系的时候,比如一个请…

好玩的动作单机游戏:鬼泣4 游戏安装包

Devil May Cry 4让玩家沉醉于哥德式的超自然世界之中;体验一个新主角与熟悉的英雄发生冲突的故事。玩家操作新主角Nero,利用游戏独特的新系统──强大的「恶魔之手」能释放令人难以置信的攻击和製作出不间断的连续技。 凭藉PC的高效能图形显示功能&…

【PostgreSQL】PostgreSQL 教程

博主介绍:✌全网粉丝20W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…

k8s核心操作_存储抽象_K8S中使用ConfigMap抽取配置_实现配置热更新---分布式云原生部署架构搭建032

现在有个问题,是上面我们利用pv和pvc 就是持久卷 以及 持久卷申请,实现了对存储的,pod删除以后,对其使用的存储空间也进行了删除,那么还有个问题,对于redis这种我们希望,他的配置也管理起来. 比如这个redis的配置文件. 以后其他的配置文件也是这样. 使用配置文件的存储在k8s中…

HTML2048小游戏(最新版)

比上一篇文章的2048更好一点。 控制方法&#xff1a;WASD键&#xff08;小写&#xff09;或页面上四个按钮 效果图如下&#xff1a; 源代码在图片后面 源代码 HTML <!DOCTYPE html> <html lang"en"> <head><meta charset&…

idea Apipost 插件导出接口文档字段类型全部是string

idea版本&#xff1a;2023.2.1 Apipost-Helper-2.0插件版本&#xff1a; 联系官方客服后&#xff0c;更换插件版本&#xff0c;问题解决。更换后的插件版本为&#xff1a; 插件链接放在文章首部了&#xff0c;可直接下载&#xff0c;使用idea直接安装这个zip包&#xff0c;无需…

内容安全(深度行为检测技术、IPS、AV、入侵检测方法)

1、深度行为检测技术 深度行为检测技术&#xff1a;是一种基于深度学习和机器学习的技术&#xff0c;它通过分析用户在网络中的行为模式&#xff0c;识别异常或潜在威胁行为&#xff0c;从而保护网络安全和内容安全 分类&#xff1a; 深度包检测技术&#xff08;Deep Packet…

uniapp转小程序,小程序转uniapp方法

&#x1f935; 作者&#xff1a;coderYYY &#x1f9d1; 个人简介&#xff1a;前端程序媛&#xff0c;目前主攻web前端&#xff0c;后端辅助&#xff0c;其他技术知识也会偶尔分享&#x1f340;欢迎和我一起交流&#xff01;&#x1f680;&#xff08;评论和私信一般会回&#…

【数据结构】单链表 双向链表

目录 链表链表的分类单链表单链表接口的实现内部类头插法尾插法任意位置插入查找是否包含关键字key是否在单链表当中删除第一次出现关键字为key的节点删除所有值为key的节点得到单链表的长度清空链表单链表的优缺点 双向链表双向链表接口的实现内部类头插法尾插法任意位置插入查…