STM32智能交通监测系统教程

news2024/11/15 11:10:27

目录

  1. 引言
  2. 环境准备
  3. 智能交通监测系统基础
  4. 代码实现:实现智能交通监测系统 4.1 数据采集模块 4.2 数据处理与控制模块 4.3 通信与网络系统实现 4.4 用户界面与数据可视化
  5. 应用场景:交通监测与管理
  6. 问题解决方案与优化
  7. 收尾与总结

1. 引言

智能交通监测系统通过STM32嵌入式系统结合各种传感器、执行器和通信模块,实现对交通数据的实时监控、自动处理和数据传输。本文将详细介绍如何在STM32系统中实现一个智能交通监测系统,包括环境准备、系统架构、代码实现、应用场景及问题解决方案和优化方法。

2. 环境准备

硬件准备

  1. 开发板:STM32F4系列或STM32H7系列开发板
  2. 调试器:ST-LINK V2或板载调试器
  3. 传感器:如超声波传感器、红外传感器、摄像头、速度传感器等
  4. 执行器:如交通信号灯、报警器
  5. 通信模块:如Wi-Fi模块、LoRa模块
  6. 显示屏:如OLED显示屏
  7. 按键或旋钮:用于用户输入和设置
  8. 电源:电源适配器

软件准备

  1. 集成开发环境(IDE):STM32CubeIDE或Keil MDK
  2. 调试工具:STM32 ST-LINK Utility或GDB
  3. 库和中间件:STM32 HAL库和FreeRTOS

安装步骤

  1. 下载并安装STM32CubeMX
  2. 下载并安装STM32CubeIDE
  3. 配置STM32CubeMX项目并生成STM32CubeIDE项目
  4. 安装必要的库和驱动程序

3. 智能交通监测系统基础

控制系统架构

智能交通监测系统由以下部分组成:

  1. 数据采集模块:用于采集交通中的车辆数量、速度、车距、车牌等数据
  2. 数据处理与控制模块:对采集的数据进行处理和分析,生成控制信号
  3. 通信与网络系统:实现交通数据与服务器或其他设备的通信
  4. 显示系统:用于显示系统状态和交通数据
  5. 用户输入系统:通过按键或旋钮进行设置和调整

功能描述

通过各种传感器采集交通数据,并实时显示在OLED显示屏上。系统通过数据处理和网络通信,实现对交通数据的监测和管理。用户可以通过按键或旋钮进行设置,并通过显示屏查看当前状态。

4. 代码实现:实现智能交通监测系统

4.1 数据采集模块

配置超声波传感器

使用STM32CubeMX配置GPIO接口:

  1. 打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的GPIO引脚,设置为输入和输出模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

#include "stm32f4xx_hal.h"

#define TRIG_PIN GPIO_PIN_0
#define ECHO_PIN GPIO_PIN_1
#define GPIO_PORT GPIOA

void GPIO_Init(void) {
    __HAL_RCC_GPIOA_CLK_ENABLE();

    GPIO_InitTypeDef GPIO_InitStruct = {0};
    GPIO_InitStruct.Pin = TRIG_PIN;
    GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
    HAL_GPIO_Init(GPIO_PORT, &GPIO_InitStruct);

    GPIO_InitStruct.Pin = ECHO_PIN;
    GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(GPIO_PORT, &GPIO_InitStruct);
}

uint32_t Read_Distance(void) {
    HAL_GPIO_WritePin(GPIO_PORT, TRIG_PIN, GPIO_PIN_RESET);
    HAL_Delay(2);
    HAL_GPIO_WritePin(GPIO_PORT, TRIG_PIN, GPIO_PIN_SET);
    HAL_Delay(10);
    HAL_GPIO_WritePin(GPIO_PORT, TRIG_PIN, GPIO_PIN_RESET);

    uint32_t startTime = HAL_GetTick();
    while (HAL_GPIO_ReadPin(GPIO_PORT, ECHO_PIN) == GPIO_PIN_RESET) {
        if (HAL_GetTick() - startTime > 100) {
            return 0; // Timeout
        }
    }

    startTime = HAL_GetTick();
    while (HAL_GPIO_ReadPin(GPIO_PORT, ECHO_PIN) == GPIO_PIN_SET) {
        if (HAL_GetTick() - startTime > 100) {
            return 0; // Timeout
        }
    }

    uint32_t travelTime = HAL_GetTick() - startTime;
    uint32_t distance = travelTime * 0.034 / 2; // Calculate distance in cm

    return distance;
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    GPIO_Init();

    uint32_t distance;

    while (1) {
        distance = Read_Distance();
        HAL_Delay(1000);
    }
}
配置速度传感器

使用STM32CubeMX配置TIM接口:

  1. 打打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的TIM引脚,设置为输入模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

#include "stm32f4xx_hal.h"

TIM_HandleTypeDef htim2;

void TIM2_Init(void) {
    __HAL_RCC_TIM2_CLK_ENABLE();

    TIM_ClockConfigTypeDef sClockSourceConfig = {0};
    TIM_MasterConfigTypeDef sMasterConfig = {0};

    htim2.Instance = TIM2;
    htim2.Init.Prescaler = 0;
    htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
    htim2.Init.Period = 0xFFFFFFFF;
    htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
    htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
    HAL_TIM_Base_Init(&htim2);

    sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
    HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig);
    HAL_TIM_IC_Init(&htim2);

    sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
    sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
    HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig);
}

uint32_t Read_Speed(void) {
    HAL_TIM_IC_Start(&htim2, TIM_CHANNEL_1);
    HAL_Delay(100);
    uint32_t count = __HAL_TIM_GET_COUNTER(&htim2);
    HAL_TIM_IC_Stop(&htim2, TIM_CHANNEL_1);

    return count;
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    TIM2_Init();

    uint32_t speed;

    while (1) {
        speed = Read_Speed();
        HAL_Delay(1000);
    }
}
配置红外传感器

使用STM32CubeMX配置GPIO接口:

  1. 打打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的GPIO引脚,设置为输入模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

#include "stm32f4xx_hal.h"

#define IR_PIN GPIO_PIN_0
#define GPIO_PORT GPIOB

void GPIOB_Init(void) {
    __HAL_RCC_GPIOB_CLK_ENABLE();

    GPIO_InitTypeDef GPIO_InitStruct = {0};
    GPIO_InitStruct.Pin = IR_PIN;
    GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(GPIO_PORT, &GPIO_InitStruct);
}

uint8_t Read_IR_Sensor(void) {
    return HAL_GPIO_ReadPin(GPIO_PORT, IR_PIN);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    GPIOB_Init();

    uint8_t ir_status;

    while (1) {
        ir_status = Read_IR_Sensor();
        HAL_Delay(1000);
    }
}

4.2 数据处理与控制模块

数据处理模块将传感器数据转换为可用于控制系统的数据,并进行必要的计算和分析。

交通控制算法

实现一个简单的交通控制算法,根据传感器数据控制交通信号灯和报警器:

#define DISTANCE_THRESHOLD 20
#define SPEED_THRESHOLD 100
#define CAR_DETECTED 1

void Control_Traffic(uint32_t distance, uint32_t speed, uint8_t ir_status) {
    if (distance < DISTANCE_THRESHOLD || speed > SPEED_THRESHOLD || ir_status == CAR_DETECTED) {
        // 打开红灯和报警器
        HAL_GPIO_WritePin(GPIOB, GPIO_PIN_1, GPIO_PIN_SET); // 红灯
        HAL_GPIO_WritePin(GPIOB, GPIO_PIN_2, GPIO_PIN_SET); // 报警器
    } else {
        // 打开绿灯,关闭报警器
        HAL_GPIO_WritePin(GPIOB, GPIO_PIN_1, GPIO_PIN_RESET); // 红灯
        HAL_GPIO_WritePin(GPIOB, GPIO_PIN_2, GPIO_PIN_RESET); // 报警器
        HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_SET); // 绿灯
    }
}

void GPIOB_Init(void) {
    __HAL_RCC_GPIOB_CLK_ENABLE();

    GPIO_InitTypeDef GPIO_InitStruct = {0};
    GPIO_InitStruct.Pin = GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3;
    GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
    HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    GPIOB_Init();
    GPIO_Init();
    TIM2_Init();

    uint32_t distance, speed;
    uint8_t ir_status;

    while (1) {
        distance = Read_Distance();
        speed = Read_Speed();
        ir_status = Read_IR_Sensor();

        Control_Traffic(distance, speed, ir_status);

        HAL_Delay(1000);
    }
}

4.3 通信与网络系统实现

配置Wi-Fi模块

使用STM32CubeMX配置UART接口:

  1. 打打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的UART引脚,设置为UART模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

#include "stm32f4xx_hal.h"
#include "usart.h"
#include "wifi_module.h"

UART_HandleTypeDef huart1;

void UART1_Init(void) {
    huart1.Instance = USART1;
    huart1.Init.BaudRate = 115200;
    huart1.Init.WordLength = UART_WORDLENGTH_8B;
    huart1.Init.StopBits = UART_STOPBITS_1;
    huart1.Init.Parity = UART_PARITY_NONE;
    huart1.Init.Mode = UART_MODE_TX_RX;
    huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
    huart1.Init.OverSampling = UART_OVERSAMPLING_16;
    HAL_UART_Init(&huart1);
}

void Send_Traffic_Data_To_Server(uint32_t distance, uint32_t speed, uint8_t ir_status) {
    char buffer[128];
    sprintf(buffer, "Distance: %lu, Speed: %lu, IR: %u", distance, speed, ir_status);
    HAL_UART_Transmit(&huart1, (uint8_t*)buffer, strlen(buffer), HAL_MAX_DELAY);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    UART1_Init();
    GPIO_Init();
    TIM2_Init();

    uint32_t distance, speed;
    uint8_t ir_status;

    while (1) {
        distance = Read_Distance();
        speed = Read_Speed();
        ir_status = Read_IR_Sensor();

        Send_Traffic_Data_To_Server(distance, speed, ir_status);

        HAL_Delay(1000);
    }
}

4.4 用户界面与数据可视化

配置OLED显示屏

使用STM32CubeMX配置I2C接口:

  1. 打打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的I2C引脚,设置为I2C模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

首先,初始化OLED显示屏:

#include "stm32f4xx_hal.h"
#include "i2c.h"
#include "oled.h"

void Display_Init(void) {
    OLED_Init();
}

然后实现数据展示函数,将交通数据展示在OLED屏幕上:

void Display_Data(uint32_t distance, uint32_t speed, uint8_t ir_status) {
    char buffer[32];
    sprintf(buffer, "Distance: %lu cm", distance);
    OLED_ShowString(0, 0, buffer);
    sprintf(buffer, "Speed: %lu", speed);
    OLED_ShowString(0, 1, buffer);
    sprintf(buffer, "IR: %u", ir_status);
    OLED_ShowString(0, 2, buffer);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    I2C1_Init();
    Display_Init();
    GPIOB_Init();
    GPIO_Init();
    TIM2_Init();

    uint32_t distance, speed;
    uint8_t ir_status;

    while (1) {
        distance = Read_Distance();
        speed = Read_Speed();
        ir_status = Read_IR_Sensor();

        // 显示交通数据
        Display_Data(distance, speed, ir_status);

        HAL_Delay(1000);
    }
}

5. 应用场景:交通监测与管理

智能交通信号控制

智能交通监测系统可以用于城市交通信号控制,通过实时采集交通数据,实现自动控制,提高交通管理效率和安全性。

道路交通监控

在道路交通监控中,智能交通监测系统可以实现对车辆流量、速度和车距的实时监控,确保道路交通的畅通和安全。

智能停车管理

智能交通监测系统可以用于智能停车管理,通过数据采集和分析,为停车场的管理和优化提供科学依据。

智能交通研究

智能交通监测系统可以用于智能交通研究,通过数据采集和分析,为交通管理和优化提供科学依据。

⬇帮大家整理了单片机的资料

包括stm32的项目合集【源码+开发文档】

点击下方蓝字即可领取,感谢支持!⬇

点击领取更多嵌入式详细资料

问题讨论,stm32的资料领取可以私信!

6. 问题解决方案与优化

常见问题及解决方案

传感器数据不准确

确保传感器与STM32的连接稳定,定期校准传感器以获取准确数据。

解决方案:检查传感器与STM32之间的连接是否牢固,必要时重新焊接或更换连接线。同时,定期对传感器进行校准,确保数据准确。

交通数据处理不稳定

优化处理算法和硬件配置,减少数据处理的不稳定性,提高系统反应速度。

解决方案:优化处理算法,调整参数,减少振荡和超调。使用高精度传感器,提高数据采集的精度和稳定性。选择更高效的执行器,提高数据处理的响应速度。

数据传输失败

确保Wi-Fi模块与STM32的连接稳定,优化通信协议,提高数据传输的可靠性。

解决方案:检查Wi-Fi模块与STM32之间的连接是否牢固,必要时重新焊接或更换连接线。优化通信协议,减少数据传输的延迟和丢包率。选择更稳定的通信模块,提升数据传输的可靠性。

显示屏显示异常

检查I2C通信线路,确保显示屏与MCU之间的通信正常,避免由于线路问题导致的显示异常。

解决方案:检查I2C引脚的连接是否正确,确保电源供电稳定。使用示波器检测I2C总线信号,确认通信是否正常。如有必要,更换显示屏或MCU。

优化建议

数据集成与分析

集成更多类型的传感器数据,使用数据分析技术进行交通状态的预测和优化。

建议:增加更多监测传感器,如雷达传感器、摄像头等。使用云端平台进行数据分析和存储,提供更全面的交通监测和管理服务。

用户交互优化

改进用户界面设计,提供更直观的数据展示和更简洁的操作界面,增强用户体验。

建议:使用高分辨率彩色显示屏,提供更丰富的视觉体验。设计简洁易懂的用户界面,让用户更容易操作。提供图形化的数据展示,如实时交通图表、历史记录等。

智能化控制提升

增加智能决策支持系统,根据历史数据和实时数据自动调整交通管理策略,实现更高效的交通环境控制和管理。

建议:使用数据分析技术分析交通数据,提供个性化的交通管理建议。结合历史数据,预测可能的问题和需求,提前优化控制策略。

7. 收尾与总结

本教程详细介绍了如何在STM32嵌入式系统中实现智能交通监测系统,从硬件选择、软件实现到系统配置和应用场景都进行了全面的阐述。通过合理的技术选择和系统设计,可以构建一个高效且功能强大的智能交通监测系统。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1931906.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

1千多看图猜成语游戏ACCESS\EXCEL数据库

今天闲来无事想写个代码自己搞定&#xff0c;我不写代码已经很久了&#xff0c;主要是年纪不小了对新技术的学习比较吃力&#xff0c;兴趣也被生活打磨的体无完肤。今天又捡起VB&#xff08;暴露了年纪&#xff09;搞了一下。 当然&#xff0c;很多事情都是这样&#xff0c;自己…

【入门级】docker

开头处生动的描述一下”码头工人”吧&#xff1a;小鲸鱼&#xff08;登记处Registry&#xff1a;比如docker hub官方&#xff09;背着好多集装箱&#xff08;仓库repository&#xff1a;存放各种各样的镜像&#xff0c;一般存放的是一类镜像&#xff0c;这一类镜像中通过tag 版…

数据安全的护航者:数据脱敏与敏感词过滤详解

数据安全重要性 发散问题&#xff0c;大家最近有没有因隐私或者敏感数据泄露而产生的问题以及烦恼&#xff1f; 生活中&#xff0c;手机、身份证、社保账号等泄露引发的困扰 工作中.... 之前测试环境发送邮件给客户的用户等 1、什么是数据脱敏 定义&#xff1a;数据脱敏是…

【算法笔记自学】第 9 章 提高篇(3)——数据结构专题(2)

9.1树与二叉树 #include <cstdio>int main() {int n, m;scanf("%d%d", &n, &m);printf(n m 1 ? "Yes" : "No");return 0; } 9.2二叉树的遍历 #include <cstdio> #include <vector> using namespace std;const int…

useState函数

seState是一个react Hook(函数)&#xff0c;它允许我们像组件添加一个状态变量&#xff0c;从而控制影响组件的渲染结果 数据驱动试图 本质&#xff1a;和普通JS变量不同的是&#xff0c;状态变量一旦发生变化组件的视图UI也会随着变化(数据驱动试图) 使用 修改状态 注意&am…

tracert及Test-netconnection使用

tracert命令 tracert <参数> <目标 IP 或主机名>-d 不将地址解析成主机名。 -h maximum_hops 搜索目标的最大跃点数。 -j host-list 与主机列表一起的松散源路由(仅适用于 IPv4)。 -w timeout 等待每个回复的超时时间(以毫秒为单位)。 -R 跟踪往返行程路径(仅适用…

【iOS】——ARC源码探究

一、ARC介绍 ARC的全称Auto Reference Counting. 也就是自动引用计数。使用MRC时开发者不得不花大量的时间在内存管理上&#xff0c;并且容易出现内存泄漏或者release一个已被释放的对象&#xff0c;导致crash。后来&#xff0c;Apple引入了ARC。使用ARC&#xff0c;开发者不再…

docker搭建普罗米修斯监控gpu

ip8的服务器监控ip110和ip111的服务器 被监控的服务器110和111只需要安装node-export和nvidia-container-toolkit 下载镜像包 docker pull prom/node-exporter docker pull prom/prometheus docker pull grafana/grafana新建目录 mkdir /opt/prometheus cd /opt/prometheus/…

微软的vscode和vs2022快捷键官网链接

vscode官方文档:https://code.visualstudio.com/docs/ vscode快捷键官方文档:https://code.visualstudio.com/docs/getstarted/keybindings vs2022官方文档:https://learn.microsoft.com/zh-cn/visualstudio/ide/?viewvs-2022 vscode快捷键官方文档:https://learn.microsoft.c…

石头剪刀布休息(猜拳游戏)

自己写的简易版 //2024.07.17 import java.util.Scanner; import java.util.Random; public class GuessingGame {public static void main(String[] args) {Tom tm new Tom();System.out.println("");for (int i 0; i < 3; i) {Random r new Random();tm.com…

数据可视化在智慧医疗中的重要应用

在现代智慧医疗的推动下&#xff0c;数据可视化技术正日益成为医疗领域的重要工具。通过将复杂的医疗数据转换为直观的图表和图形&#xff0c;数据可视化不仅提升了医疗服务的效率&#xff0c;还极大地改善了患者的就医体验。 在智慧医疗中&#xff0c;数据可视化首先在电子病历…

Android View的绘制流程

1.不管是View的添加&#xff0c;还是调用View的刷新方法invalidate()或者requestLayout()&#xff0c;绘制都是从ViewRootImpl的scheduleTraversals()方法开始 void scheduleTraversals() {if (!mTraversalScheduled) {mTraversalScheduled true;mTraversalBarrier mHandler…

什么牌子的充电宝小巧容量大!盘点小巧性价比高充电宝!

想象一下&#xff0c;当准备轻装出门&#xff0c;无论是逛街购物、户外运动&#xff0c;还是长途旅行&#xff0c;一个小巧玲珑却又容量充足的充电宝&#xff0c;能轻松地被塞进的口袋、背包的小角落里&#xff0c;随时随地为的电子设备“续命”&#xff0c;这是多么令人欣喜的…

Tita的OKR:高端制造行业的OKR案例

高端设备制造行业的发展趋势&#xff1a; 产业规模持续扩大&#xff1a;在高技术制造业方面&#xff0c;航空、航天器及设备制造业、电子工业专用设备制造等保持较快增长。新能源汽车保持产销双增&#xff0c;新材料新产品生产也高速增长。 标志性装备不断突破&#xff1a;例如…

sqlite数据库,轻量级数据库的使用

什么是sqlite数据库 sqlite是具有零配置、无服务的特点&#xff0c;遵循 ACID 规则&#xff0c;是一款备受欢迎的轻量级数据库。 tips&#xff1a;ACID 规则即&#xff0c;A&#xff08;原子性&#xff09;、C&#xff08;一致性&#xff09;、I&#xff08;独立性&#xff0…

第一百六十七节 Java IO教程 - Java Zip字节数组

Java IO教程 - Java Zip字节数组 校验和 Java在java.util.zip包中提供了一个Adler32类来计算数据字节的Adler-32校验和。 我们需要调用这个类的update()方法将字节传递给它。 在同一个包中还有另一个名为CRC32的类&#xff0c;它允许您使用CRC32算法计算校验和。 以下代码…

2.10、matlab中字符、数字、矩阵、字符串和元胞合并为字符串并将字符串以不同格式写入读出excel

1、前言 在 MATLAB 中&#xff0c;可以使用不同的数据类型&#xff08;字符、数字、矩阵、字符串和元胞&#xff09;合并为字符串&#xff0c;然后将字符串以不同格式写入 Excel 文件。 以下是一个示例代码&#xff0c;展示如何将不同数据类型合并为字符串&#xff0c;并以不…

Java的maven项目pom文件因为版本问题导入失败的处理办法

前言 今天遇到的一个问题&#xff0c;而且网上的答案很乱&#xff0c;几乎每人各执一词&#xff0c;年份还差距很远&#xff0c;几乎没有为我解决问题提供什么帮助&#xff0c;感觉蛮怪的&#xff0c;确实不常见&#xff0c;但不应该每次都靠降低版本来解决这种小类小bug&…

【文心智能体】前几天百度热搜有一条非常有趣的话题《00后疯感工牌》,看看如何通过低代码工作流方式实现图片显示

00后疯感工牌体验&#xff1a;https://mbd.baidu.com/ma/s/6yA90qtM 目录 前言比赛推荐工作流创建工作流入口创建工作流界面工作流界面HTTP工具卡点地方 总结推荐文章 前言 前几天百度热搜有一条非常有有趣《00后疯感工牌》。 想着通过文心智能体去一键生成00后疯感工牌是不是…

防火墙的冗余基础知识+实验检测

将之前先理清需要注意的知识点&#xff1a; 1、注意防火墙冗余时的会话表必须保持一致&#xff0c;这里HRP技术已经做到 2、vrrp是自动开启抢占的&#xff0c;且是根据优先级进行抢占的 3、免费ARP的作用&#xff1a;告诉交换机的某个IP的mac地址变成了我的这个mac地址 4、HRP …