四、GD32 MCU 常见外设介绍

news2024/11/23 20:55:15

系统架构

1.RCU 时钟介绍

众所周知,时钟是MCU能正常运行的基本条件,就好比心跳或脉搏,为所有的工作单元提供时间 基数。时钟控制单元提供了一系列频率的时钟功能,包括多个内部RC振荡器时钟(IRC)、一个外部 高速晶体振荡器时钟(HXTAL)、一个外部低速晶体振荡器时钟(LXTAL)、一个或多个锁相环(PLL) 一个HXTAL时钟和LXTAL时钟监视器、时钟预分频器、时钟多路复用器和时钟门控电路等。 本章,我们将通过一个“输出HXTAL时钟信号” 的实验来熟悉RCU的工作流程。

1.1RCU 配置

GD32系列MCU在启动后首先会执行Reset Handler,紧接着就会执行SystemInit()函数,而时钟的初始化,就是在这个函数中进行,其主要的功能是配置系统时钟CK_SYS(即主频),AHB、APB1以及APB2时钟。SystemInit()函数由GD32官方库提供,不同系列的MCU有一些差别,但实现方式基本相同:首先将RCU关于CK_SYS,AHB、APB1以及APB2时钟配置的一些寄存器恢复到默认值,然后再执行system_clock_config()函数,用于具体的时钟配置。

实际上用户可以不用过于关心上述的实现方式,因为GD32库已经为您提供了多种时钟源及时钟选择,您只需按照以下步骤即可将时钟设置为您期望的值(以GD32F30x为例,其他系列类似):

(1) 在system_gd32f30x.c中,用户可通过选择宏来进行预设的时钟配置,如下图代码清单时钟配置选择宏定义,选择了HXTAL作为PLL时钟源,且配置CK_SYS为120MHz。

/* system frequency define */
#define __IRC8M (IRC8M_VALUE) /* internal 8 MHz RC oscillator frequency */
#define __HXTAL (HXTAL_VALUE) /* high speed crystal oscillator frequency */
#define __SYS_OSC_CLK (__IRC8M) /* main oscillator frequency */
/* select a system clock by uncommenting the following line */
/* use IRC8M */
//#define __SYSTEM_CLOCK_IRC8M (uint32_t)(__IRC8M) 
//#define __SYSTEM_CLOCK_48M_PLL_IRC8M (uint32_t)(48000000)
//#define __SYSTEM_CLOCK_72M_PLL_IRC8M (uint32_t)(72000000)
//#define __SYSTEM_CLOCK_108M_PLL_IRC8M (uint32_t)(108000000)
//#define __SYSTEM_CLOCK_120M_PLL_IRC8M (uint32_t)(120000000)
/* use HXTAL(XD series CK_HXTAL = 8M, CL series CK_HXTAL = 25M) */
//#define __SYSTEM_CLOCK_HXTAL (uint32_t)(__HXTAL)
//#define __SYSTEM_CLOCK_48M_PLL_HXTAL (uint32_t)(48000000)
//#define __SYSTEM_CLOCK_72M_PLL_HXTAL (uint32_t)(72000000)
//#define __SYSTEM_CLOCK_108M_PLL_HXTAL (uint32_t)(108000000)
#define __SYSTEM_CLOCK_120M_PLL_HXTAL (uint32_t)(120000000)

但这种情况下您使用的外部晶振需要是默认值,此值由HXTAL_VALUE定义,如为8000000,那么您应该选择8MHz的外部晶振。

当然,您可以使用其他规格的外部晶振,这种情况下就需要去修改RCU配置函数里面的一些参数,主要是分频和倍频系数,以达到期望的配置,具体如何修改,可以结合GD32的User manual中定义的RCU寄存器来对配置函数进行分析。

(2) 设置HXTAL_VALUE的值。

此数值和RCU的初始化其实并没有太大关系,但如果您使用的外部晶振不是默认值,那么除了按照步骤(1)修改配置参数外,您还必须将此HXTAL_VALUE的值修改为实际的外部晶振频率,这是因为在一些通信外设配置时,库函数会调用HXTAL_VALUE值来设置波特率,如此值设置错误,会导致通信异常。

1.2.非默认外部晶振配置时钟实例

GD32各系列固件库都已提供配置系统时钟的函数。需要注意的是,在使用外部晶振时,固件库中HXTAL_VALUE值规定了 外部晶振的默认值,以 GD32F30x系列为例,如下图代码清单HXTAL_VALUE选择宏定义所示,当芯片为非互联型(GD32F303)时,默认使用的外部晶振频率为8MHz,当芯片为互联型(GD32F305/307)时,默认使用的外部晶振频率为25MHz。

#ifdef GD32F30X_CL 
#define HXTAL_VALUE ((uint32_t)25000000) 
#else 
#define HXTAL_VALUE ((uint32_t)8000000)

那么,当我们使用非默认值的外部晶振时,该如何修改时钟配置函数呢?以GD32F303为例,首先我们先看下GD32F303的时钟树,如图所示。

预分频器可以配置AHB、APB2和APB1域的时钟频率。 AHB、APB2、APB1域的最高时钟频率分别为120MHz、120MHz、60MHz。RCU通过AHB时钟(HCLK)8分频后作为Cortex系统定时器(SysTick)的外部时钟。通过对SysTick控制和状态寄存器的设置,可选择上述时钟或AHB(HCLK)时钟作为SysTick时钟。

ADC时钟由APB2时钟经2、4、6、8、12、16分频或由AHB时钟经5、6、10、20分频获得,它们是通过设置RCU_CFG0和RCU_CFG1寄存器的ADCPSC位来选择。

SDIO, EXMC的时钟由CK_AHB提供。

TIMER时钟由CK_APB1和CK_APB2时钟分频获得,如果APBx(x=0,1)的分频系数不为1,则TIMER时钟为CK_APBx(x=0,1)的两倍。

USBD的时钟由CK48M时钟提供。通过配置 RCU_ADDCTL寄存器的CK48MSEL及PLL48MSEL位可以选择CK_PLL时钟或IRC48M时钟做为CK48M的时钟源。

CTC时钟由IRC48M时钟提供,通过CTC单元,可以实现IRC48M时钟精度的自动调整。

I2S的时钟由CK_SYS提供。

通过配置RCU_BDCTL寄存器的RTCSRC位, RTC时钟可以选择由LXTAL时钟、IRC40K时钟或HXTAL时钟的128分频提供。RTC时钟选择HXTAL时钟的128分频做为时钟源后,当1.2V内核电压域掉电时,时钟将停止。 RTC时钟选择IRC40K时钟做为时钟源后,当VDD掉电时,时钟将停止。

RTC时钟选择LXTAL时钟做为时钟源后,当VDD和VBAT都掉电时,时钟将停止。

当FWDGT启动时, FWDGT时钟被强制选择由IRC40K时钟做为时钟源。

现在,我们结合图GD32F303系统时钟树对时钟树进行分析:

(1) 标注A为CK_SYS,即系统主时钟,它一条线连接至CK_I2S,给I2S外设提供时钟,另一条线经过AHB分频器,输出到CK_AHB,即标注B。

(2) CK_AHB为AHB总线时钟,AHB总线时钟或直连,或经过APB1/APB2分频,给标注C位置的外设提供时钟。

(3) 那么,CK_SYS从何而来呢,我们看标注A的左边,CK_SYS通过SCS位域选择CK_IRC8M、CK_PLL、CK_HXTAL作为时钟来源,其中CK_IRC8M来源于标注D,即IRC8M(MCU内部8M RC时钟);CK_HXTAL来源于标注F,即HXTAL(外部时钟);CK_PLL的来源较复杂,我们单独拿出来说。

(4) CK_PLL来源于锁相环倍频器输出,倍频系数通过PLLMF位域选择,而PLLMF来源于两个地方,一个为 IRC8M 的 2 分 频 , 另 外 一 个 为 预 分 频 器 PREDV0 , 而 PREDV0 来 源 于 标 注 E, 即CK_IRC48M(内部48M RC时钟)和标注F,即HXTAL(外部高速时钟)。

(5) 通过以上分析可以得出结论,CK_PLL的时钟源为D:IRC8M、E:IRC48M、F:HXTAL,用户通过相关寄存器设置选择时钟线。

(6) 和前面分析相同,RTC的时钟来自于F:HXTAL的128分频、G:LXTAL(外部32.768K低速时钟)、F:IRC40K(内部40K RC时钟);FWDGT的时钟来源于F:IRC40K。

(7) 标注I位置为时钟输出线,它的作用是将MCU内部的一些时钟信号线输出到特定IO口上(大部分系列MCU的PA8口都可被设置为时钟输出口0,有些系列MCU含有两组输出IO,具体IO配置请参考各系列MCU Datasheet)用来给其他器件提供基准时钟。由图中可看出通过设置位域CK_OUT0,输出的时钟包括CK_PLL、CK_IRC8M、CK_HXTAL、CK_PLL的2分频。

结合以上分析,我们来看下GD32F30x固件库时钟配置函数(因篇幅有限,只贴出各分频和倍频配置部分),还是以GD32F303芯片为例,如下图代码清单时钟配置部分代码所示:

/* select HXTAL/2 as clock source */
RCU_CFG0 &= ~(RCU_CFG0_PLLSEL | RCU_CFG0_PREDV0);
RCU_CFG0 |= (RCU_PLLSRC_HXTAL_IRC48M | RCU_CFG0_PREDV0);
/* CK_PLL = (CK_HXTAL/2) * 30 = 120 MHz */
RCU_CFG0 &= ~(RCU_CFG0_PLLMF | RCU_CFG0_PLLMF_4 | RCU_CFG0_PLLMF_5);
RCU_CFG0 |= RCU_PLL_MUL30;

 可以看出,8MHz的HXTAL经过预分频器PREDV0分频成4MHz,再通过锁相环PLL倍频30倍到了120MHz。

那么,当您选择其他规格的外部晶振,比如12MHz,则可以先通过预分频器PREDV0分频成6MHz,再通过锁相环PLL倍频20倍即可,如代码清单 0-4. 使用12MHz外部晶振配置120M系统时钟所示。

/* select HXTAL/2 as clock source */
RCU_CFG0 &= ~(RCU_CFG0_PLLSEL | RCU_CFG0_PREDV0);
RCU_CFG0 |= (RCU_PLLSRC_HXTAL_IRC48M | RCU_CFG0_PREDV0);
/* CK_PLL = (CK_HXTAL/2) * 20 = 120 MHz */
RCU_CFG0 &= ~(RCU_CFG0_PLLMF | RCU_CFG0_PLLMF_4 | RCU_CFG0_PLLMF_5);
RCU_CFG0 |= RCU_PLL_MUL20;

当然,在修改完配置函数后,别忘了将HXTAL_VALUE值改为12000000。

需要注意的是,在进行时钟配置时,要严格按照Datasheet中规定的时钟范围进行配置,如GD32F303的 HXTAL的选 择范 围是4~32MHz, PLL的输 入范 围是 1~25MHz,输出范围是16~120Mhz,所以当使用32MHz的外部晶振时,不进行预分频,而直接倍频是不被允许的。

1.3.硬件连接说明

本章通过“输出HXTAL时钟信号”实验来熟悉RCU的工作流程。

通过前面内容讲解可知,本章实验为“输出HXTAL时钟信号”,即通过PA8口将HXTAL输出,我们使用示波器,将探头连接到PA8口,从示波器上读取PA8口波形即可。

1.4.软件配置说明

本小节讲解RCU_Example例程中RCU的配置说明,主要包括外设时钟配置、GPIO引脚配置、主函数介绍以及运行结果。

软件设计的流程如下:

(1)使能GPIOA时钟

(2)初始化PA8,将此端口设置为备用功能模式(AFIO)

(3)通过调用库函数选择HXTAL作为PA8时钟信号源

外设时钟配置

void rcu_config(void)
{
/* enable the GPIOA clock */
rcu_periph_clock_enable(RCU_GPIOA);
}

GPIO 引脚配置 

代码清单 0-6. RCU 例程引脚配置

void gpio_config(void)
{
/* configure PA8 port */ 
#if defined GD32F10X_HD || GD32F30X_HD || GD32F20X_CL || GD32E10X 
gpio_init(GPIOA, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, GPIO_PIN_8);
#elif GD32F1X0 || GD32F4XX || GD32F3X0 || GD32E23X
gpio_mode_set(GPIOA,GPIO_MODE_AF,GPIO_PUPD_NONE,GPIO_PIN_8);
gpio_af_set(GPIOA,GPIO_AF_0,GPIO_PIN_8);
#endif
}

GPIO的配置说明,请参考GPIO章节。

主函数说明

代码清单 0-7 . RCU 例程主函数

int main(void)
{
rcu_config();
gpio_config();
#if defined GD32F10X_HD || GD32F30X_HD || GD32E10X
rcu_ckout0_config(RCU_CKOUT0SRC_HXTAL);
#elif defined GD32F20X_CL || GD32F4XX
rcu_ckout0_config(RCU_CKOUT0SRC_HXTAL,RCU_CKOUT0_DIV1);
#elif GD32F1X0 || GD32F3X0 || GD32E23X
rcu_ckout_config(RCU_CKOUTSRC_HXTAL,RCU_CKOUT_DIV1);
#endif
 while(1){
 }
}

如代码清单RCU例程主函数,该主函数主要分成四部分,RCU时钟配置、GPIO配置、RCU输出相关库函数调用和while(1)主循环,其中RCU输出相关库函数请读者结合各系列MCU Datasheet、User Manual进行RCU例程的分析。

注意:因为是输出HXTAL,所以必须要使能HXTAL,否则PA8将无波形输出。一个简单的办法是将HXTAL作为CK_SYS时钟源,请参考本章第一节内容。

1.5.运行结果

如图所示 RCU 例程运行结果为 RCU 例程运行结果,可看出,PA8 口正确输出了 HXTAL 波形。

本章内容每日持续更新,如有兴趣,请关注收藏

更多GD32 MCU相关咨询:https://www.gd32bbs.com/ 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1931218.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python os模块的强大功能与应用详解

概要 在Python中,os模块提供了与操作系统进行交互的功能,允许我们执行各种操作系统任务,如文件和目录操作、环境变量访问、进程管理等。os模块是标准库的一部分,无需额外安装。本文将详细介绍os模块的功能,并提供相应的示例代码,帮助全面掌握这一强大工具。 os 模块概述…

支付宝低代码搭建电商小程序,无需编程,可视化操作

大家好,我是小悟 在数字化浪潮的推动下,为了更快速、高效地搭建电商小程序,支付宝低代码平台凭借其独特优势,为商家提供了便捷的解决方案。 支付宝低代码平台犹如一座精心打造的智慧工坊,让电商小程序的搭建变得轻而易…

【 香橙派 AIpro评测】烧系统运行部署LLMS大模型跑开源yolov5物体检测并体验Jupyter Lab AI 应用样例(新手入门)

文章目录 一、引言⭐1.1下载镜像烧系统⭐1.2开发板初始化系统配置远程登陆💖 远程ssh💖查看ubuntu桌面💖 远程向日葵 二、部署LLMS大模型&yolov5物体检测⭐2.1 快速启动LLMS大模型💖拉取代码💖下载mode数据&#x…

【Outlook】从Outlook新版回归经典版全攻略

引言 在微软宣布计划于2024年底淘汰邮件应用(Mail app)之后,许多用户发现新版Outlook应用(Outlook (new))在他们的Windows 11/10系统上自动启动。如果您更倾向于使用经典版Outlook(Outlook (classic)&…

大气热力学(11)——热力学图的应用之二(焚风)

本篇文章源自我在 2021 年暑假自学大气物理相关知识时手写的笔记,现转化为电子版本以作存档。相较于手写笔记,电子版的部分内容有补充和修改。笔记内容大部分为公式的推导过程。 文章目录 11.1 焚风的概念11.2 焚风形成的原理11.3 焚风的示意图 11.1 焚风…

Caido——Burpsuite强有力的竞品工具

0x00 最近发现一个burpsuite的竞品:Caido,尝试使用了一下,发现它的功能还是挺强大的,而且在用户体验上,比Burpsuite要好不少!和大家分享一下。 Caido是一款用RUST语言编写的代理工具,目前处于…

nftables(7)集合(SETS)

简介 在nftables中,集合(sets)是一个非常有用的特性,它允许你以集合的形式管理IP地址、端口号等网络元素,从而简化规则的配置和管理。 nftables提供了两种类型的集合:匿名集合和命名集合。 匿名集合&…

捷配总结的SMT工厂安全防静电规则

SMT工厂须熟记的安全防静电规则! 安全对于我们非常重要,特别是我们这种SMT加工厂,通常我们所讲的安全是指人身安全。 但这里我们须树立一个较为全面的安全常识就是在强调人身安全的同时亦必须注意设备、产品的安全。 电气: 怎样预…

【顺序表】算法题 --- 力扣

一、移除元素 移除元素 这个题让我们移除数组nums中值为val的元素,最后返回k(不是val的元素个数) 这样显然我们就不能再创建一个数组来解决这个问题了,只能另辟蹊径 思路:双指针 这里定义两个指针(l1&…

【Python】连接MySQL数据库:详细教程与示例代码

文章目录 1. 安装必要的库2. 建立与MySQL的连接3. 执行SQL查询4. 插入数据5. 更新数据6. 删除数据7. 错误处理8. 小结 在数据驱动的开发中,连接数据库是一个至关重要的技能。Python作为一门强大的编程语言,提供了多种方式连接并操作MySQL数据库。本文将详…

nuitka 打包python程序成windows exe可执行文件

参考: https://www.zhihu.com/question/281858271/answer/2466245521 https://www.zhihu.com/question/281858271 https://zhuanlan.zhihu.com/p/689115995 https://blog.csdn.net/Pan_peter/article/details/136411229 下载: pydantic-2.6.1 pydantic-…

通讯的概念

通讯的概念 文章目录 通讯的概念1.通讯的基本概念2. 串行通讯与并行通讯2. 全双工、半双工及单工通讯3. 同步通讯与异步通讯4. 通讯速率 1.通讯的基本概念 通讯是指在嵌入式系统中实现数据交换的技术手段,它涉及到硬件与硬件、硬件与软件之间的信息传输。基本概念包…

OneForAll工具:安装指南、使用方法及常见问题解决(超全)

引言 在网络安全领域,子域名收集是信息收集过程中非常重要的一步。OneForAll 是一款功能强大的子域名收集工具,能够帮助我们高效地进行子域名收集。本文将详细介绍 OneForAll 的安装和使用方法,并解决在使用过程中可能遇到的问题。 1. OneFo…

手机找回删除的通讯录号码,2个方法,让你不再烦恼

在数字化的浪潮中,我们的手机通讯录如同一张张精心编织的社会网络图谱,每一串数字背后都蕴藏着一段故事或一个重要的联系。然而,生活总会面临小插曲,总有些时候会不慎将通讯录遗失。不用过多担心,本文将会提供一些方法…

Facebook:数字时代的社交瑰宝

在当今数字化飞速发展的时代,社交媒体已经成为人们日常生活中不可或缺的一部分,而Facebook作为其中的领军者,不仅连接了全球数十亿的用户,更深刻地改变了人们的社交方式和生活方式。本文将探讨Facebook如何成为数字时代的社交瑰宝…

Early Convolutions Help Transformers See Better(NeurIPS 2021, Meta)

paper:Early Convolutions Help Transformers See Better 出发点 本文的出发点是解决 ViT 模型在优化性方面的问题。作者假设问题主要出现在 ViT 的早期视觉处理部分,即 "patchify" 过程,这是通过一个大的步幅和大核卷积来实现的…

Linux入门攻坚——28、php、mysql基础

httpdphp:是在httpd中启用模块,不同的工作模式,使用的模块不同 modules httpd:prefork --> libphp5.so httpd:event or worker --> libphp5-zts.so php:引入zend engine后,分为…

算法实验3:贪心算法的应用

实验内容 &#xff08;1&#xff09;活动安排问题 设有n个活动的集合E{1, 2, …, n}&#xff0c;其中每个活动都要求使用同一资源&#xff0c;而在同一时间内只有一个活动能使用这一资源。每个活动i都有一个要求使用该资源的起始时间si和一个结束时间fi&#xff0c;且si <f…

# Redis 入门到精通(五)-- redis 持久化(3)

Redis 入门到精通&#xff08;五&#xff09;-- redis 持久化&#xff08;3&#xff09; 一、redis 持久化–AOF 自动重写配置 1、AOF 自动重写方式–自动重写触发条件设置 auto-aof-rewrite-min-size size auto-aof-rewrite-percentage percent2、AOF 自动重写方式-- 自动重…

如何在Orcale首页定位到The Java® Virtual Machine Specification页面?

目标地址&#xff1a;https://docs.oracle.com/javase/specs/jls/se8/html/index.html 1. 在Orcale首页菜单栏中选择 Resources ⇒ Java Downloads 2. 往下滑&#xff0c;找到 Online Documentation 选项&#xff0c;点进去 3. 点击 Specifications 下的 Language VM 选项 5…