JVM(day2)

news2024/9/22 15:36:33

经典垃圾收集器

Serial收集

使用一个处理器或一条收集线程去完成垃圾收集工作,更重要的是强调在它进行垃圾收集时,必须暂停其他所有工作线程,直到它收集结束。

ParNew收集器

ParNew 收集器除了支持多线程并行收集之外,其他与 Serial 收集器相比并没有太多创新之处,但它
却是不少运行在服务端模式下的 HotSpot 虚拟机,尤其是 JDK 7 之前的遗留系统中首选的新生代收集器,其中有一个与功能、性能无关但其实很重要的原因是:除了Serial 收集器外,目前只有它能与 CMS收集器配合工作。

Parallel Scavenge收集器

同样是基于标记-复制算法实现的收集器,也是能够并行收集的多线程收集器,Parallel Scavenge收集器的特点是它的关注点与其他收集器不同,CMS等收集器的关注点是尽可能 地缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标则是达到一个可控制的吞吐量(Throughput)。所谓吞吐量就是处理器用于运行用户代码的时间与处理器总消耗时间的比值

Serial Old收集器

Serial Old Serial 收集器的老年代版本,它同样是一个单线程收集器,使用标记 - 整理算法。

Parallel Old收集器

Parallel Old Parallel Scavenge 收集器的老年代版本,支持多线程并发收集,基于标记 - 整理算法实现

CMS收集器(重点1)

CMS Concurrent Mark Sweep )收集器是一种以获取最短回收停顿时间为目标的收集器。目前很
大一部分的 Java 应用集中在互联网网站或者基于浏览器的 B/S 系统的服务端上,这类应用通常都会较为关注服务的响应速度,希望系统停顿时间尽可能短,以给用户带来良好的交互体验。CMS 收集器就非常符合这类应用的需求。
从名字(包含 “Mark Sweep” )上就可以看出 CMS 收集器是基于标记 - 清除算法实现的,它的运作
过程相对于前面几种收集器来说要更复杂一些,整个过程分为四个步骤:

 

由于在整个过程中耗时最长的并发标记并发清除阶段中,垃圾收集器线程都可以与用户线程一
起工作,所以从总体上来说, CMS 收集器的内存回收过程是与用户线程一起并发执行

 

其中初始标记重新标记这两个步骤仍然需要 “Stop The World” 。初始标记仅仅只是标记一下 GC

Roots能直接关联到的对象,速度很快;并发标记阶段就是从GC Roots的直接关联对象开始遍历整个对象图的过程,这个过程耗时较长但是不需要停顿用户线程,可以与垃圾收集线程一起并发运行;而重新标记阶段则是为了修正并发标记期间,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间通常会比初始标记阶段稍长一些,但也远比并发标记阶段的时间短;最后是并发清除阶段,清理删除掉标记阶段判断的已经死亡的对象,由于不需要移动存活对象,所以这个阶段也是可以与用户线程同时并发的。

CMS 是一款优秀的收集器,它最主要的优点在名字上已经体现出来:并发收集低停顿,一些官
方公开文档里面也称之为 并发低停顿收集器 Concurrent Low Pause Collector )。
三个缺点:
1. CMS 收集器对处理器资源非常敏感
2.由于 CMS 收集器无法处理 浮动垃圾 Floating Garbage
3.CMS 是一款基于 标记 - 清除 ”算法实现的收集器,会有大量空间碎片产生。

G1收集器(重点2)

它开创了收集器面向局部收集的设计思路和基于Region的内存布局形式。

G1是一款主要面向服务端应用的垃圾收集器。 

G1 开创的基于 Region 的堆内存布局是它能够实现这个目标的关键。虽然 G1 也仍是遵循分代收集理
论设计的,但其堆内存的布局与其他收集器有非常明显的差异: G1 不再坚持固定大小以及固定数量的分代区域划分,而是把连续的Java 堆划分为多个大小相等的独立区域( Region ,每一个 Region 都可以 根据需要,扮演新生代的 Eden 空间、 Survivor 空间,或者老年代空间。收集器能够对扮演不同角色的Region采用不同的策略去处理,这样无论是新创建的对象还是已经存活了一段时间、熬过多次收集的旧对象都能获取很好的收集效果。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1928414.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

HTTP背后的故事:理解现代网络如何工作的关键(二)

一.认识请求方法(method) 1.GET方法 请求体中的首行包括:方法,URL,版本号 方法描述的是这次请求,是具体去做什么 GET方法: 1.GET 是最常用的 HTTP 方法. 常用于获取服务器上的某个资源。 2.在浏览器中直接输入 UR…

【实战:Django-Celery-Flower实现异步和定时爬虫及其监控邮件告警】

1 Django中集成方式一(通用方案) 1.1 把上面的包-复制到djagno项目中 1.2 在views中编写视图函数 1.3 配置路由 1.4 浏览器访问,提交任务 1.5 启动worker执行任务 1.6 查看任务结果 2 Django中集成方式二(官方方案&#xff0…

25_Vision Transformer原理详解

1.1 简介 Vision Transformer (ViT) 是一种将Transformer架构从自然语言处理(NLP)领域扩展到计算机视觉(CV)领域的革命性模型,由Google的研究人员在2020年提出。ViT的核心在于证明了Transformer架构不仅在处理序列数据(如文本)方面非常有效&…

探索智能合约在金融科技中的前沿应用与挑战

随着区块链技术的发展和普及,智能合约作为其核心应用之一,在金融科技(FinTech)领域中展现出了巨大的潜力和挑战。本文将深入探讨智能合约的基本概念、前沿应用案例,以及面临的技术挑战和发展趋势,旨在帮助读…

redis笔记2

redis是用c语言写的,放不频繁更新的数据(用户数据。课程数据) Redis 中,"穿透"通常指的是缓存穿透(Cache Penetration)问题,这是指一种恶意或非法请求直接绕过缓存层,直接访问数据库或…

HouseCrafter:平面草稿至3D室内场景的革新之旅

在室内设计、房地产展示和影视布景设计等领域,将平面草稿图快速转换为立体的3D场景一直是一个迫切的需求。HouseCrafter,一个创新的AI室内设计方案,正致力于解决这一挑战。本文将探索HouseCrafter如何将这一过程自动化并提升至新的高度。 一、定位:AI室内设计的革新者 Ho…

通过MATLAB控制TI毫米波雷达的工作状态之TLV数据解析及绘制

前言 前一章博主介绍了如何基于设计视图中的这些组件结合MATLAB代码来实现TI毫米波雷达数据的实时采集。这一章将在此基础上实现TI毫米波雷达的TLV数据解析。过程中部分算法会涉及到一些简单的毫米波雷达相关算法,需要各位有一定的毫米波雷达基础。 TLV数据之协议解析 紧着…

爬虫学习 | 01 Web Scraper的使用

目录 背景介绍: 第一部分:Web Scraper简介 1.什么是Web Scraper: Web Scraper🛒 主要用途: 2.为什么选择Web Scraper: 第二部分:安装Web Scraper ​​​​​1.打开google浏览器&#xf…

实验六:频域图像增强方法

一、实验目的 熟练掌握频域滤波增强的各类滤波器的原理及实现。分析不同用途的滤波器对频域滤波增强效果的影响,并分析不同的滤波器截止频率对频域滤波增强效果的影响。二、实验原理 ① Butterworth 低通滤波器:一种具有最大平坦通带幅度响应的滤波器。它的特点是在通带内具…

WPF实现一个带旋转动画的菜单栏

WPF实现一个带旋转动画的菜单栏 一、创建WPF项目及文件1、创建项目2、创建文件夹及文件3、添加引用 二、代码实现2.ControlAttachProperty类 一、创建WPF项目及文件 1、创建项目 打开VS2022,创建一个WPF项目,如下所示 2、创建文件夹及文件 创建资源文件夹&…

redis讲解与介绍

Redis介绍: Redis 是一个开源(BSD许可)的,内存中的数据结构存储系统,它可以用作数据库、缓存和消息中间件。 它支持多种类型的数据结构,如 字符串(strings), 散列&#x…

linux adb命令

⏩ 大家好哇!我是小光,正在努力寻找自己的职业方向。 ⏩ 在调试设备时,经常会用到adb命令,本文对linux adb命令做一个知识分享。 ⏩ 感谢你的阅读,不对的地方欢迎指正。 1.adb命令 即 Android Debug Bridge 是一种允许…

从产品手册用户心理学分析到程序可用性与易用性的重要区别

注:机翻,未校对。 Designing for People Who Have Better Things To Do With Their Lives 为那些生活中有更重要事情要做的人设计 When you design user interfaces, it’s a good idea to keep two principles in mind: 在设计用户界面时,…

数据库:编程(打开、操作(增、删、改、查)、关闭)

一、需要的头文件 sqlite3.h 二、编译过程 gcc xxx -lsqlite3 三、编程框架 打开数据库 》读写数据库(增,删,改,查) 》关闭数据库 3.1 打开数据库: sqlite3_open int sqlite3_open(char * path,sqlite3 ** db); 功能&…

docker持久化

上周学习了docker的dockerfile,这周会往下学习一下docker的持久化;提到持久化,首先会涉及到一个UnionFS的概念; 1、什么是UnionFS? docker创建镜像的时候,会将各种依赖包括操作系统OS、工具包、依赖库等都放在文件系…

Zookeeper之CAP理论及分布式一致性算法

CAP理论 CAP理论告诉我们,一个分布式系统不可能同时满足以下三种 一致性(C:consistency)可用性(A:Available)分区容错性(P:Partition Tolerance) 这三个基本要求,最多只能同时满足…

内容长度不同的div如何自动对齐展示

平时我们经常会遇到页面内容div结构相同页,这时为了美观我们会希望div会对齐展示,但当div里的文字长度不一时又不想写固定高度,就会出现div长度长长短短,此时实现样式可以这样写: .e-commerce-Wrap {display: flex;fle…

小程序-模板与配置

一、WXML模板语法 1.数据绑定 2.事件绑定 什么是事件 小程序中常用的事件 事件对象的属性列表 target和currentTarget的区别 bindtap的语法格式 在事件处理函数中为data中的数据赋值 事件传参 (以下为错误示例) 3.事件传参与数据同步 4.条件渲染 …

人工智能算法工程师(中级)课程13-神经网络的优化与设计之梯度问题及优化与代码详解

大家好,我是微学AI,今天给大家介绍一下人工智能算法工程师(中级)课程13-神经网络的优化与设计之梯度问题及优化与代码详解。 文章目录 一、引言二、梯度问题1. 梯度爆炸梯度爆炸的概念梯度爆炸的原因梯度爆炸的解决方案 2. 梯度消失梯度消失的概念梯度…

十九、【文本编辑器(五)】排版功能

目录 一、搭建框架 二、实现段落对齐 三、实现文本排序 一、搭建框架 (1) 在imgprocessor.h文件中添加private变量: QLabel *listLabel; //排序设置项QComboBox *listComboBox;QActionGroup *actGrp;QAction *leftAction;QAction *…