人工智能算法工程师(中级)课程13-神经网络的优化与设计之梯度问题及优化与代码详解

news2024/9/22 17:28:28

大家好,我是微学AI,今天给大家介绍一下人工智能算法工程师(中级)课程13-神经网络的优化与设计之梯度问题及优化与代码详解。
在这里插入图片描述

文章目录

  • 一、引言
  • 二、梯度问题
    • 1. 梯度爆炸
      • 梯度爆炸的概念
      • 梯度爆炸的原因
      • 梯度爆炸的解决方案
    • 2. 梯度消失
      • 梯度消失的概念
      • 梯度消失的原因
      • 梯度消失的解决方案
  • 三、优化策略
    • 1. 学习率调整
    • 2. 参数初始化
    • 3. 激活函数选择
    • 4. Batch Norm和Layer Norm
    • 5. 梯度裁剪
  • 四、代码实现
  • 五、总结

一、引言

在深度学习领域,梯度问题及优化策略是模型训练过程中的关键环节。本文将围绕梯度爆炸、梯度消失、学习率调整、参数初始化、激活函数选择、Batch Norm、Layer Norm、梯度裁剪等方面,详细介绍相关数学原理,并使用PyTorch搭建完整可运行代码。

二、梯度问题

1. 梯度爆炸

梯度爆炸的概念

梯度爆炸是深度学习领域中遇到的一个关键问题,尤其在训练深度神经网络时更为常见。它指的是在反向传播算法执行过程中,梯度值异常增大,导致模型参数的更新幅度远超预期,这可能会使参数值变得非常大,甚至溢出,从而使模型训练失败或结果变得不可预测。想象一下,如果一辆车的油门被卡住,车辆会失控地加速,直到撞毁;梯度爆炸的情况与此类似,模型的“油门”(即参数更新步长)失去控制,导致模型“失控”。

梯度爆炸的原因

梯度爆炸通常由以下几种情况引发:
网络深度:在深度神经网络中,反向传播计算的是损失函数相对于每一层权重的梯度。由于每一层的梯度都是通过前一层的梯度与当前层的权重矩阵相乘得到的,如果每一层的梯度都大于1,那么随着网络深度的增加,梯度的乘积将呈指数级增长,最终导致梯度爆炸。
参数初始化:如果神经网络的权重被初始化为较大的值,那么在反向传播开始时,梯度也会相应地很大。这种情况下,即使是浅层网络也可能经历梯度爆炸。
激活函数的选择:虽然题目中提到sigmoid函数可能导致梯度爆炸的说法并不准确,实际上,sigmoid函数在输入值较大或较小时的梯度接近于0,更容易导致梯度消失而非梯度爆炸。然而,一些激活函数如ReLU在正向传播时能够放大信号,如果网络中存在大量正向的大值输入,可能会间接导致反向传播时的梯度过大。

梯度爆炸的解决方案

为了解决梯度爆炸问题,可以采取以下几种策略:
权重初始化:采用合理的权重初始化策略,如Xavier初始化或He初始化,以保证网络中各层的梯度大小相对均衡,避免初始阶段梯度过大。
梯度裁剪:这是一种常见的解决梯度爆炸的技术,它通过限制梯度的大小,防止其超过某个阈值。当梯度的模超过这个阈值时,可以按比例缩小梯度,以确保模型参数的更新在可控范围内。
批量归一化:通过在每一层的输出上应用批量归一化,可以减少内部协变量移位,有助于稳定训练过程,减少梯度爆炸的风险。
在这里插入图片描述

2. 梯度消失

梯度消失的概念

梯度消失是深度学习中一个常见的问题,尤其是在训练深层神经网络时。它指的是在反向传播过程中,梯度值随网络深度增加而逐渐减小的现象。这会导致靠近输入层的神经元权重更新量极小,从而无法有效地学习到特征,严重影响了网络的学习能力和最终性能。

梯度消失的原因

梯度消失主要由以下几个因素引起:
网络深度:神经网络中的反向传播依赖于链式法则,每一层的梯度是由其下一层的梯度与当前层的权重矩阵及激活函数的导数相乘得到的。如果每一层的梯度都小于1,那么随着层数的增加,梯度的乘积会呈指数级衰减,最终导致梯度变得非常小。
激活函数的选择:某些激活函数,如sigmoid和tanh,在输入值远离原点时,其导数会变得非常小。例如,sigmoid函数在输入值较大或较小时,其导数趋近于0,这意味着即使有误差信号传回,也几乎不会对权重产生影响,从而导致梯度消失。
权重初始化:如果网络的权重初始化不当,比如初始化值过大或过小,也可能加剧梯度消失。例如,如果权重初始化得过大,激活函数可能迅速进入饱和区,导致梯度变小。

梯度消失的解决方案

为了缓解梯度消失问题,可以采取以下策略:
选择合适的激活函数:使用ReLU(Rectified Linear Unit)这样的激活函数,它可以避免梯度在正半轴上消失,因为其导数在正区间内恒为1。
权重初始化:采用如Xavier初始化或He初始化等技术,这些初始化方法可以确保每一层的方差大致相同,从而减少梯度消失。
残差连接:在ResNet等架构中引入残差连接,可以使深层网络的训练更加容易,因为它允许梯度直接跳过几层,从而避免了梯度的指数级衰减。
批量归一化:通过在每一层的输出上应用批量归一化,可以减少内部协变量移位,有助于稳定训练过程并减少梯度消失。

三、优化策略

1. 学习率调整

学习率是模型训练过程中的超参数,适当调整学习率有助于提高模型性能。以下是一些常用的学习率调整策略:

  • 阶梯下降:固定学习率,每训练一定轮次后,学习率减小为原来的某个比例。
  • 指数下降:学习率以指数形式衰减。
  • 动量法:引入动量项,使模型在更新参数时考虑历史梯度。

2. 参数初始化

参数初始化对模型训练至关重要。以下是一些常用的参数初始化方法:

  • 常数初始化:将参数初始化为固定值。
  • 正态分布初始化:将参数从正态分布中随机采样。
  • Xavier初始化:考虑输入和输出神经元的数量,使每一层的方差保持一致。

3. 激活函数选择

激活函数的选择对梯度问题及模型性能有很大影响。以下是一些常用的激活函数:

  • Sigmoid:将输入值映射到(0, 1)区间。
  • Tanh:将输入值映射到(-1, 1)区间。
  • ReLU:保留正数部分,负数部分置为0。

4. Batch Norm和Layer Norm

Batch Norm和Layer Norm是两种常用的归一化方法,用于缓解梯度消失问题。

  • Batch Norm:对每个特征在小批量数据上进行归一化。
  • Layer Norm:对每个样本的所有特征进行归一化。

5. 梯度裁剪

梯度裁剪是一种防止梯度爆炸的有效方法。当梯度超过某个阈值时,将其按比例缩小。

四、代码实现

以下是基于PyTorch的梯度问题及优化策略的代码实现:

import torch
import torch.nn as nn
import torch.optim as optim
# 定义一个简单的神经网络
class SimpleNet(nn.Module):
    def __init__(self):
        super(SimpleNet, self).__init__()
        self.fc1 = nn.Linear(10, 50)
        self.fc2 = nn.Linear(50, 1)
        self.relu = nn.ReLU()
    def forward(self, x):
        x = self.relu(self.fc1(x))
        x = self.fc2(x)
        return x
# 初始化模型、损失函数和优化器
model = SimpleNet()
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
# 训练模型
for epoch in range(100):
    optimizer.zero_grad()
    inputs = torch.randn(32, 10)
    targets = torch.randn(32, 1)
    outputs = model(inputs)
    loss = criterion(outputs, targets)
    loss.backward()
    # 梯度裁剪
    torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1)
    optimizer.step()
    print(f'Epoch [{epoch+1}/100], Loss: {loss.item()}')

五、总结

本文详细介绍了梯度问题及优化策略,包括梯度爆炸、梯度消失、学习率调整、参数初始化、激活函数选择、Batch Norm、Layer Norm和梯度裁剪。通过PyTorch代码实现,展示了如何在实际应用中解决梯度问题。希望本文对您在深度学习领域的研究和实践有所帮助。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1928384.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

十九、【文本编辑器(五)】排版功能

目录 一、搭建框架 二、实现段落对齐 三、实现文本排序 一、搭建框架 (1) 在imgprocessor.h文件中添加private变量: QLabel *listLabel; //排序设置项QComboBox *listComboBox;QActionGroup *actGrp;QAction *leftAction;QAction *…

实践致知第16享:设置Word中某一页横着的效果及操作

一、背景需求 小姑电话说:现在有个word文档,里面有个表格太长(如下图所示),希望这一个设置成横的,其余页还是保持竖的! 二、解决方案 1、将鼠标放置在该页的最前面闪烁,然后选择“页面”》“↘…

Macbook pro插移动硬盘没反应,Macbook pro移动硬盘读不了怎么办 macbook插移动硬盘后无法使用

为了弥补Macbook pro硬盘容量的缺失,我们有时候会使用到外接硬盘或移动硬盘。一般来说,这些硬盘都是即插即用的,可能部分要安装插件。不过,在一些特殊情况下,也会遇到插硬盘没反应等问题。本文会给大家解答Macbook pro…

PyTorch张量创建和随机数生成器算法

文章目录 1、基本创建方式1.1、根据已有数据创建张量1.2、根据已有数据创建张量1.3、根据已有数据创建张量 2、创建线性和随机张量2.1、创建线性空间的张量2.2、创建随机张量2.3、什么是随机数种子2.4、initial_seed()和manual_seed() 3、创建01张量3.1、全0张量3.2、全1张量3.…

PGCCC|【PostgreSQL】PCP认证考试大纲#postgresql 认证

PostgreSQL Certified Professional PCP(中级) PCP目前在市场上非常紧缺,除了具备夯实的理论基础以外,要有很强的动手能力,获得“PCP(中心)“的学员,将能够进入企业的生产系统进行运…

MongoDB自学笔记(二)

一、前言 接着上一篇文章,在上一篇文章中学习了如何使用数据库、如何创建集合、如何往集合里添加文档,今天我们继续学习一下更新文档,更新文档相对来说比较复杂笔者打算分多次来记录学习过程。 二、文档操作 1、更新文档 基础语法&#x…

爬虫-requests和Selenium

1、了解requests的功能 1.1 使用post和get发送请求 HTTP中常见发送网络请求的方式有两种,GET和POST。GET是从指定的资源请求数据,POST是向指定的资源提交要被处理的数据。 GET的用法: import requestsr requests.get("https://www.…

面试题010-数据库-MySQL(MySQL+索引)

面试题010-数据库-MySQL(MySQL索引) 目录 面试题010-数据库-MySQL(MySQL索引)题目自测题目答案1. MySQL是什么?有什么优点?2. 什么是SQL注入?如何解决SQL注入?3. MyISAM 和 InnoDB 有什么区别?4. SQL在MySQL数据库中的…

【论文阅读】LLM4GCL: CAN LARGE LANGUAGE MODEL EMPOWER GRAPH CONTRASTIVE LEARNING?

LLM4GCL: CAN LARGE LANGUAGE MODEL EMPOWER GRAPH CONTRASTIVE LEARNING? https://openreview.net/forum?idwxClzZdjqP 图对比学习的重点就是图数据的增强,针对图中节点的表示或者图的结构进行扰动,通过对比学习得到对应的节点表示,以便于…

azure学习在日本IT工作的重要性

在日本数字化转型的浪潮中,微软Azure已经成为众多企业的首选云平台。作为全球第二大云服务提供商,Azure在日本市场的重要性与日俱增。本文将探讨为什么学习Azure对日本IT专业人士至关重要,以及如何通过lalapodo云原生技术的培训课程,快速掌握这一关键技能。 Azure在日本的战略地…

MongoDB教程(五):mongoDB聚合框架

💝💝💝首先,欢迎各位来到我的博客,很高兴能够在这里和您见面!希望您在这里不仅可以有所收获,同时也能感受到一份轻松欢乐的氛围,祝你生活愉快! 文章目录 引言MongoDB 聚…

如何申请抖音本地生活服务商?3种方式优劣势分析!

随着多家互联网大厂在本地生活板块的布局力度不断加大,以抖音为代表的头部互联网平台的本地生活服务商成为了创业赛道中的大热门,与抖音本地生活服务商怎么申请等相关的帖子,更是多次登顶创业者社群的话题榜单。 就目前的市场情况来看&#x…

Gitlab CI/CD --- use a sample CI/CD template

0 Preface/Foreword Pipeline, job, stage的关系如下描述: A pipeline is composed of independent jobs that run scripts, grouped into stages. Stages run in sequential order, but jobs within stages run in parallel. 关键信息: pipeline由独…

新款S32K3 MCU可解决汽车软件开发的成本和复杂性问题(器件编号包含S32K322E、S32K322N、S32K328)

全新的S32K3系列专门用于车身电子系统、电池管理和新兴的域控制器,利用涵盖网络安全、功能安全和底层驱动程序的增强型封装持续简化软件开发。 相关产品:S32K328NHT1VPCSR S32K328GHT1MPCSR S32K322NHT0VPASR S32K322EHT0VPBSR S32K322NHT0VPBSR S32K32…

javascript之匿名函数和立即执行函数

函数总体分为具名函数(有名字)和匿名函数 匿名函数使用方法: let fn function (x, y) { // console.log(函数) console.log(x y) } fn(1, 2) 正常函数: function fun() { console.log(1) } fun() 2.立即执行函数 好处是避免全局…

MySQL运维实战之ProxySQL(9.9)proxysql自身高可用

作者:俊达 proxysql作为一个程序,本身也可能出现故障。部署proxysql的服务器也肯能出现故障。高可用架构的一个基本原则是消除单点。 可以在多个节点上部署proxysql,在proxysql之前再加一层负载均衡(如使用LVS或其他技术&#x…

dab-detr: dynamic anchor boxes are better queries for detr【目标检测-方法详细解读】

DAB-DETR: Dynamic Anchor Boxes Are Better Queries for DETR 摘要 在本文中,我们提出了一种新的查询形式,使用动态锚框作为DETR(DEtection TRansformer)的查询,并提供了对DETR中查询角色的更深入理解。这种新形式直…

《昇思25天学习打卡营第21天|基于 MindSpore 实现 BERT 对话情绪识别》

#学习打卡第21天# 1. BERT 模型 BERT全称是来自变换器的双向编码器表征量(Bidirectional Encoder Representations from Transformers),它是Google于2018年末开发并发布的一种新型语言模型,是基于Transformer中的Encoder并加上双向…

Vue中使用mind-map实现在线思维导图

概述 在前面的文章Vue中实现在线画流程图实现中介绍了流程图的在线绘制,在本文,给大家分享一下基于mind-map实现在线的思维导图,并实现:1. 导图导出为图片;2. 打开xmind文件。 实现效果 实现 1. mind-map简介 simp…

文心一言《使用手册》,文心一言怎么用?

一、认识文心一言 (一)什么是文心一言 文心一言是百度研发的 人工智能大语言模型产品,能够通过上一句话,预测生成下一段话。 任何人都可以通过输入【指令】和文心一言进行对话互动、提出问题或要求,让文心一言高效地…