关于Conversational QA 的一些调研

news2025/1/14 10:11:58

文章目录

  • Paper1: Understanding User Satisfaction with Task-oriented Dialogue Systems
    • Motivation:
    • Classification:
    • Contributions:
    • Dataset
    • Knowledge:
  • Paper2: Evaluating Mixed-initiative Conversational Search Systems via User Simulation
    • Motivation
    • Classification:
    • Contribution
    • Methods
      • Semantically-controlled text generation
      • GPT2-based simulated user
    • Datasets
      • Qulac and ClariQ
      • Multi-turn conversational data
    • Future Work
    • Knowledge

Paper1: Understanding User Satisfaction with Task-oriented Dialogue Systems

Understanding User Satisfaction with Task-oriented Dialogue Systems:

Motivation:

The influence of user experience on the user satisfaction ratings of TDS in addition to utility.

Classification:

Use and propose some metrics to evaluate task-oriented dialogue system(TDS)

Contributions:

  • add an extra annotation layer for the ReDial dataset
  • analyse the annotated dataset to identify dialogue aspects that influence the overall impression.
    • Our work rates user satisfaction at both turn and dialogue level on six fine-grained user satisfaction aspects, unlike previous research rating both levels on overall impression
  • propose additional dialogue aspects with significant contributions to the overall impression of a TDS

Dataset

ReDial(recommendation dialogue dataset): a large dialogue-based human-human movie recommendation corpus

  • operations on datasets: create an additional annotation layer for the ReDial dataset. We set up an annotation experiment on Amazon Mechanical Turk (AMT) using so-called master workers. The AMT master workers annotate a total of 40 conversations on six dialogue aspects(relevance, interestingness, understanding, task completion, efficiency, and interest arousal)

Knowledge:

Dialogue systems(DSs) has two categories:

  • task-oriented dialogue systems(TSDs), evaluate on utility
  • open-domain chat-bots, evaluate on user experience

Paper2: Evaluating Mixed-initiative Conversational Search Systems via User Simulation

Evaluating Mixed-initiative Conversational Search Systems via User Simulation:

Motivation

Propose a conversational User Simulator, called USi, for automatic evaluation of such conversational search system.

Classification:

Develop the User Simulator to answer clarifying questions prompted by a conversational system.

Contribution

  • propose a user simulator, USi, for conversational search systemevaluation, capable of answering clarifying questions prompted by the search system
  • perform extensive set of experiments to evaluate the feasibility of substituting real users with the user simulator
  • release a dataset of multi-turn interactions acquired through crowdsourcing

Methods

Semantically-controlled text generation

We define the task of generating answers to clarifying questions as a sequence generation task. Current SOTA language models formulate the task as next-word prediction task:

在这里插入图片描述

Answer generation needs to be conditioned on the underlying information need:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-BrlwpqFT-1668865889265)在这里插入图片描述

  • a i a_i ai is the current token of the answer
  • a < i a_{<i} a<i are all the previous ones
  • i n , q , c q in,q,cq in,q,cq correspond to the information need, initial query, current clarifying question

GPT2-based simulated user

  • base USi in the GPT-2 model with language modelling and classification losses(DoubleHead GPT-2)
    • learn to generate the appropriate seq through the language modelling loss
    • distinguish a correct answer to the distractor one

Singel-turn responses:

  • GPT-2 input:

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nQVLyGiP-1668865889266)(C:\Users\nishiyu\AppData\Roaming\Typora\typora-user-images\image-20221118203339781.png)]

    • accept two seq as input: one with the original target answer in the end, the other with the distractor answer

Conversation history-aware model:

  • history-aware GPT-2 input:

在这里插入图片描述

Inference:

  • omit the answer a a a from the input seq.
  • In order to generate answers, we use a combination of SOTA sampling techniques to generate a textual sequence from the trained model

Datasets

Qulac and ClariQ

both built for single-turn offline evaluation.

Qulac: (topic, facet, clarifying_question, answer). ClariQ is an extension of Qulac

facet from Qulac and ClariQ represents the underlying information need, as it describes in detail what the intent behind the issued query is. Moreover, question represents the current asked question, while answer is our language modelling target.

Multi-turn conversational data

we construct multi-turn data that resembles a more realistic interaction between a user and the system. Our user simulator USi is then further fine-tuned on this data.

Future Work

  • a pair-wise comparison of multi-turn conversations.
  • aim to observe user simulator behaviour in unexpected, edge case scenarios
    • for example, people will repeat the answer is the clarifying question is repeated. We want USi to do so.

Knowledge

Datasets: Qulac, ClariQ

Multi-turn passage retrieval: The system needs to understand the conversational context and retrieve appropriate passages from the collection.

Document-retrieval task: the initial query is expanded with the text of the clarifying question and the user’s answer and the fed into a retrieval model.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/19284.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

java计算机毕业设计ssm建设路小学读背兴趣任务管理系统

项目介绍 随着互联网技术的发展,计算机技术广泛应用在人们的生活中,逐渐成为日常工作、生活不可或缺的工具。目前,各种在线学习平台层出不穷。建设路小学读背兴趣任务繁重,如何快速的学习提高小学生的读背兴趣任务,是老师非常关注的问题。为小学读背兴趣任务开发必要的程序,能…

ES6 入门教程 13 Symbol 13.8 内置的 Symbol 值

ES6 入门教程 ECMAScript 6 入门 作者&#xff1a;阮一峰 本文仅用于学习记录&#xff0c;不存在任何商业用途&#xff0c;如侵删 文章目录ES6 入门教程13 Symbol13.8 内置的 Symbol 值13.8.1 Symbol.hasInstance13.8.2 Symbol.isConcatSpreadable13.8.3 Symbol.species13.8.4 …

Gillespie 随机模拟算法附matlab代码

✅作者简介&#xff1a;热爱科研的Matlab仿真开发者&#xff0c;修心和技术同步精进&#xff0c;matlab项目合作可私信。 &#x1f34e;个人主页&#xff1a;Matlab科研工作室 &#x1f34a;个人信条&#xff1a;格物致知。 更多Matlab仿真内容点击&#x1f447; 智能优化算法 …

Python最佳实践-构建自己的第三方库

移植自本人博客&#xff1a;Python最佳实践-构建自己的第三方库 Introduction 在写一个项目的时候需要用到发布订阅者模式&#xff08;又叫广播模式&#xff09;&#xff0c;于是就实现了一下&#xff0c;写完之后感觉可以封装成库&#xff0c;于是查阅了一下如何在python上开…

全自动采集软件-自动采集为原创发布工具

随着时代不停地发展。互联网无时不刻地出现在我们的生活中&#xff0c;大家也越来越注重效率&#xff0c;今天小编就给大家来分享一款全自动采集软件。只需要点几下鼠标就能轻松获取数据&#xff0c;不管是导出还是发布到网上。详细参考图片一、二、三、四&#xff01; 企业人员…

CanOpen协议的伺服驱动控制

一、CanOpen的基本介绍&#xff1a;1、基本介绍&#xff1a;CanOpen在CAN网络7层协议中&#xff0c;处于应用层。CANopen协议是在20世纪90年代末&#xff0c;由CIA组织CAN-in-Automation&#xff0c;&#xff08;http://www.can-cia.org &#xff09;在CAL&#xff08;CAN Appl…

信息论编码 | 霍尔曼编码设计MATLAB实现 两种方法 函数调用

姓名 班级 20电信 学号 2020 实验项目 实验三 霍尔曼编码 日期 2022.11 实验环境 联想电脑MATLAB R2018a版 实验内容与完成情况&#xff08;记录实验内容、操作步骤、实验结果等&#xff0c;包括系统输出的错误信息&#xff0c;以截图等方式记录实验结果&#xff09; …

吹爆,这份有思路有案例能落地的SpringCloud开发笔记

前言 SpringCloud想必每一位Java程序员都不会陌生&#xff0c;很多人一度把他称之为“微服务全家桶”&#xff0c;它通过简单的注解&#xff0c;就能快速地架构微服务&#xff0c;这也是SpringCloud的最大优势。但是最近有去面试过的朋友就会发现&#xff0c;现在面试你要是没…

【毕业设计】3-基于单片机的公交车智能播报到站运行位置指示系统(原理图+源码+论文)

【毕业设计】3-基于单片机的公交车智能播报到站运行位置指示系统&#xff08;原理图源码论文&#xff09; 文章目录【毕业设计】3-基于单片机的公交车智能播报到站运行位置指示系统&#xff08;原理图源码论文&#xff09;资料下载链接任务书设计说明书摘要设计框架架构设计说明…

一个基于NetCore模块化、多租户CMS系统

今天给大家推荐一个基于.NetCore开发的、支持多租户的开源CMS系统。 项目简介 这是一个基于ASP.NET Core 构建的、模块化和多租户应用程序框架&#xff0c;采用文档数据库&#xff0c;非常高性能&#xff0c;跨平台的系统。 该项目可用于企业网站、个人博客、产品介绍网站等…

【计算机毕业设计】基于netty的网关推送平台

前言 &#x1f4c5;大四是整个大学期间最忙碌的时光,一边要忙着准备考研,考公,考教资或者实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过…

字符流用户注册案例、字符缓冲流、字符缓冲流特有功能、字符缓冲流操作文件中的数据排序案例

文章目录字符流用户注册案例字符缓冲流字符缓冲流特有功能字符缓冲流操作文件中的数据排序案例IO流小结字符流用户注册案例 案例需求&#xff1a; 将键盘录入的用户名和密码保存到本地实现永久化存储实现步骤 获取用户输入的用户名和密码&#xff08;这里使用 scanner 键盘录…

NLP的数据增强技术总结

文章目录一、简单的数据增强技术 EDA (Easy Data Augmentation) 即Normal Augmentation Method1、同义词替换(Synonym Replacement, SR)&#xff1a;2、随机插入(Random Insertion, RI)&#xff1a;3、随机交换(Random Swap, RS)&#xff1a;4、随机删除(Random Deletion, RD)&…

JS中判断数据类型的几种方法

目录 1.typeof 2.constructor 3.instanceof 4.Object.prototype.toString.call 1.typeof &#x1f4d9; 语法 : typeof(需要判断的数据变量) &#x1f4d9; 特点: &#x1f340; 对于基本数据类型,除了null外都可以返回正确的结果;对于null,返回的是Object &#x1f34…

FL Studio21中文版本新增功能FL2023完整版

FL Studio水果简称FL&#xff0c;全称&#xff1a;Fruity Loops Studio&#xff0c;国人习惯叫它水果萝卜。FL软件现有版本是 FL Studio 21&#xff0c;已全面升级支持简体中文语言界面 。 FL Studio 21水果工具更新、新功能和插件FL Studio 21已经发布&#xff0c;并且有许多…

[附源码]java毕业设计日常饮食健康推荐系统

项目运行 环境配置&#xff1a; Jdk1.8 Tomcat7.0 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff09;。 项目技术&#xff1a; SSM mybatis Maven Vue 等等组成&#xff0c;B/S模式 M…

迭代器C11

迭代器 迭代器失效 容器使用迭代器时&#xff0c;不要改变容器的大小 /在操作迭代器的过程中&#xff08;使用了迭代器这种循环体&#xff09;&#xff0c;千万不要改变vectori容器的容量&#xff0c;也就是不要增加或者删除vectori容器中的元素 /往容器中增加或者从容器中删…

python基于百度sdk语音转文字

python基于百度sdk语音转文字 1.安装baidu-aip 这样pip install aip&#xff1b; 2.要是不行的话下载"识别、合成 RESTful API Python SDK ",解压到某个文件夹下面如&#xff1a;d:\AI 百度智能云-管理中心https://console.bce.baidu.com/ai/#/ai/speech/overview/…

【面试题】深入理解Cookie、Session、Token的区别

【面试题】深入理解Cookie、Session、Token的区别 Cookie与Session Cookie Session Cookie与Session之前的联系 Cookie与Session的在请求中的工作流程 Cookie与Session存在问题 Token 什么是Token&#xff1f; 为什么要有token&#xff1f; token认证机制 Token流…

灵界的科学丨五、心灵与意识的科学奥祕

摘自李嗣涔教授《灵界的科学》 每个人都有「自我意识」&#xff0c; 每天睡觉时「我」就不见了&#xff0c; 每天早上醒来时&#xff0c;「我」又回来了&#xff0c; 好像没有太大的改变&#xff0c; 这个「我」的物理现象是什么&#xff1f; 探索科学的最后疆界──意识 …