前文连接:持续学习的综述: 理论、方法与应用(一) 前文连接:持续学习的综述: 理论、方法与应用(二:理论基础) 泛化分析 目前持续学习的理论研究主要是在增量任务的训练集上进行的,假设它们的测试集遵循相似的分布,候选解具有相似的泛化性。然而,由于学习多个任务的目标通常是高度非凸的,因此存在许多局部最优解,它们在每个训练集上的表现相似,但在测试集上的泛化性却有显著不同[313],[443]。对于持续学习,理想的解决方案不仅需要从训练集到测试集的任务内泛化性,还需要任务间泛化性,以适应其分布的增量变化。